GeoLog

GeoTalk

GeoTalk: Beatriz Gaite on why videos are a great tool for communicating your research to a broad audience

GeoTalk: Beatriz Gaite on why videos are a great tool for communicating your research to a broad audience

If you’ve not heard about our Communicate Your Science Video Competition before it gives early career scientists the chance to produce a video up-to-three-minutes long to share their research with the general public. The winning entry receives a free registration to the General Assembly the following year.

In this GeoTalk interview, Laura Roberts talks to Beatriz Gaite an early career scientist whose video on how recycling the noisy part of recordings made by seismometers can tells us important information about the Earth’s interior structure was voted as the winning entry of the 2016 Communicate Your Science Video Competition. Read on to hear about their top tips for filming a science video and what inspired them to use video to communicate their science in the first place.

Before we get started, could you introduce yourself and tell our readers a little more about your research?

I am a seismologist mainly studying the Earth structure. I did my PhD on Mexico and its vicinity using a novel approach developed in the last decade. Before, seismologists used to study earthquake signals to infer the inner structure, but now we can also study seismic ambient noise, which is everything on a seismic record… except the earthquake signals! This means we now analyse what  used to be thrown away, once considered useless. In this sense, it is like recycling. This has revolutionised the field and opened multiple applications, not only for imaging the Earth interior, but also for monitoring landslides, volcanoes or climate change effects.

Some of our readers may yet not be familiar with the competition, can you tell us a little more about it and what made you decide to take part in the competition?

Yes, the EGU video competition consists on explaining your research to a general audience through a three minute video. Once ready, you submit your video to EGU and disseminate it as much as possible to get people to vote for it . I decided to take part  because I was fascinated with the bunch of applications developed from seismic ambient noise and aware of the importance of communicating science to society. This cocktail of thoughts inspired me to create the video.

Watch Beatriz’s winning film, Subtle Whisper of the Earth

Had you filmed any science videos prior to producing ‘Subtle Whisper of the Earth’?

No, never. Only as a teenager I recorded some short, home-made videos for outdoor activities, but nothing related with science. However, in the production of Shubtle Whisper of the Earth I was helped by two professionals: Jordi Cortés, the journalist in charge of the communication at the Institute of Earth Sciences Jaume Almera, ICTJA-CSIC, who filmed and edited the video, and Daniel García (@rocambloguesco), an Earth Sciences communicator who helped me with the script.

What inspired you to make a film about your research and submit the entry to the competition?

Since I finished my PhD I was thinking about making a documentary to show how seismic ambient noise was such a big evolution for seismology. Indeed, I already had some script ideas bubbling in my mind. Then, I found out  about the competition through the recently created communication department of my center and, after thinking about it I went for it. I thought it [the video competition} was a great opportunity to make my ideas real.

We can’t go into too much detail here, but how did you go about collecting the footage and turning it into a film?

First, I adapted my original ideas to the length of the video competition specifications. After several iterations, I got the main idea. In parallel, I thought on the story: I needed something common to people, like recycling. I made a script, then Daniel helped me to simplify it from the research realm to society, and I organised it in sequences, duration and film resources. All these steps were the most time-consuming part. Jordi and I organized the “field work” dividing the filming on indoor and outdoor. Since we organized the sequence planning in advance, it took us only one morning shooting indoors and one afternoon outdoors. Jordi’s experience behind the camera and in  production helped a lot to get the final video, but we only used user-level material and software for producing and editing.

What’s your top tip for aspiring science filmmakers?

Have a clear idea of the message you want to communicate. Also, you need a story to catch the attention of the audience. Once you have the idea and the story, the next step, how to visually express them, comes easily.

Beatriz preparing materials to be used in the making of her film. Credit: Jordi Cortés

Which part of the filming process did you enjoy the most?

I enjoyed the whole process, but especially two parts: first, the beginning of the creative process, thinking what, why, and how I wanted to communicate the story, imagining the screenshots in my mind. And second, shooting with Jordi was really fun, I enjoyed it a lot, it was like a game.

Would you recommend filmmaking as a way for scientist to reach out to a broad audience?

Sure! When I started I did not think that the video would reach as many people as it did. I was really happy when some friends told me ‘now we know what you do’. Even some colleagues told me that now they understood pretty well what we get from the seismic ambient noise. It is worth it. A short video is a good way to reach a broad audience globally. Being short, specific and visual are good ingredients to grab attention.

Would you recommend others taking part in the Communicate your Science Video Competition?

Yes, of course. It is an enjoyable exercise to communicate your research. The hardest part of the competition is the self-promotion to get votes, but that’s a different story 😉

Has this interview inspired you to go forth and produce a science video? The Communicate Your Science Video Competition is currently open for submissions.

If you are pre-registered to attend the General Assembly in April, go ahead and produce a video with scenes of you out in the field, or at the lab bench showing how to work out water chemistry; entries can also include cartoons, animations (including stop motion), or music videos, – you name it! To submit your video simply email it to Laura Roberts (networking@egu.eu) by 26 February 2017.

For more information about the competition take a look at this blog post. For inspiration, why not take a look at the finalist videos from the 2015 and 2016 editions? For more tips and tricks on how to make a video to communicate your research read an interview with vlogger extraordinaire Simon Clark. We also spoke to Zakaria Ghazoui, winner of the 2015 video competition to as his thoughts on how to make a great video.

GeoTalk: Using satellites to unravel the secrets of our planet’s polar regions

GeoTalk: Using satellites to unravel the secrets of our planet’s polar regions

Geotalk is a regular feature highlighting early career researchers and their work. In this interview we speak to Bert Wouters, a polar scientist at the University of Utrecht, and winner of one of the 2016 Arne Richter Awards for Outstanding Young Scientists. At a time when the polar regions are facing increasing challenges resulting from climate change, understanding how they might respond to them is crucial. Bert’s PhD research using satellite data (from the GRACE mission) set a benchmark for the analysis and interpretation of data like it. As his career has advanced, Bert has made contributions to a number of fields within the polar sciences, from ice-sheet research, glacier and ice-cap mass-balance studies, through to ocean modeling and climate prediction. It is this notable breadth of knowledge, accompanied by an impressive publication record which makes Bert a worthy awardee.

First, could you introduce yourself and tell us a little more about your career path so far?

I was born and raised in Belgium, but moved to the Netherlands to study aerospace enginieering at the TU Delft when I was eightteen. During my PhD there, I focused on the use of satellite gravity data for climate science. Back then, the GRACE satellites had been in orbit for only a couple of years, and people were still learning how to handle and interpret this completely new set of data. The observations contained a lot more noise than expected before launch and one of the first things I did was to develop a method to remove this noise. Once we managed to do so, it opened up a whole new world. For the first time, we could track the movement of water mass on the Earth surface from month to month. These were certainly exciting times! My supervisor gave me the freedom to do pursue my own interests and I used the GRACE data to study many different topics, ranging from hydrology to oceanography and solid earth science. In the last year of my PhD, I focused on the cryosphere, which is still my main field of research.

After graduating, I did have the opportunity to continue in geodesy, but I felt it might be better for my overall development to step out of my comfort zone and move to a different field. I started a post-doc at the Dutch meteorological office (KNMI), with the aim of improving predictions of the Atlantic meridional overturning circulation. This is part of the global ocean conveyor belt and transports heat around the Earth. It has an important impact on the climate in the Atlantic region (think The day after tomorrow, minus the Hollywood drama) and my job was to predict its behaviour on decadal time scales using a global climate model. The first year was pretty though, but I learned a lot about the complexity of climate physics and numerical modeling, and I still profit from this experience today.

Meet Bert!

In 2012, I was awarded an ERC Marie Curie-Skłodowska fellowship and moved the University of Colorado in Boulder for 2 years to work with John Wahr. He was one of the founding fathers of the GRACE mission and a true giant in the field of geodesy. I had not met him before I started my fellowship, but he turned out to be not only a great scientist, but also one of the kindest and friendly persons I have ever met. I continued to refine my GRACE methods for monitoring of the cryosphere, but also started looking at different types of remote sensing data, in particular height measurements made by the Cryosat-2 altimetry mission.

This satellite had only been launched 2 years before and data was being released bit by bit.It gave me a great drive to be among a select group of people having a first look at these new observations. In the last year of my fellowship, I worked at the University of Bristol with Jonathan Bamber (the  EGU’s current  vice-president) to further refine the Cryosat-2 processing and combine it with the GRACE data. The combination of two independent measurements provides a powerful tool to map the ongoing changes in the cryosphere and yielded in some very exciting results.

Since November 2015, I’m a post-doc at the Institute for Marine and Atmospheric Research (IMAU, Utrecht University), renowned for their modelling of the regional processes (snowfall, melt, etcetera) on ice sheets and glaciers. Such models, together with in-situ observations, are indispensible to understand the changes we are seeing in the satellite data.

During EGU 2016, you gave a talk which focused on melting of glaciers and ice-caps in the North Atlantic. During the talk you spoke about the implication such melting might have on global sea level rise. Could you tell us a little more about your findings?

It’s a well known fact that the ice sheets of Greenland and Antarctica are losing ice. Studies about these regions usually receive a lot of attention from the media and general public, and rightly so: they contain a huge reservoir of ice and will be one of the major contributors to sea level rise in the coming centuries.

But we shouldn’t forget about the smaller ice caps and glaciers in other parts of the world. Many of them are located in regions which are experiencing rapid warming and because of their small size and the delicate balance between snowfall and melt that shapes them, they are extremely vulnerable to changes in the local climate. The GRACE and Cryosat-2 data show that glaciers in the North-Atlantic region currently contribute as much to sea-level rise as the Antarctic ice sheet and will continue to do so in the future. In fact, models indicate that some of the ice caps are already beyond a point of no return and that glaciers and ice caps will be one of the major sources of sea level rise in the coming decades.

Why have the glaciers and ice-caps of the North  Atlantic region received such little attention, at least until now, considering the potentially large impact their melting can have on global sea levels?

Tthe Devon Ice Cap, located in eastern Devon Island, Nunavut, Canada is one of the North Atlantic region ice-caps which have received little attention.

Well, of course I’m not the first to study these glaciers and ice caps. In fact, some individual glaciers have been monitored for over a hundred years. These records are extremely valuable and vital for validating and interpreting satellite observations, and already showed that many glaciers are retreating.

However, taking in-situ measurements on a glacier is a challenging job, and often expensive, so these observations are generally made on small glaciers, which tend to be located in easily accessible locations with a maritime climate.  This means that the few hundreds of glaciers that are monitored on a regular basis are not necessarily representative for the roughly 200 000 glaciers world wide. We really need satellite observations for that. So maybe one of the reasons that they have received little attention is because we just didn’t know how bad things are until recently.

Another reason is that their big brothers, Antarctica and Greenland, pose a huge threat, too, especially when considering longer, millenial, time scales. There’s only so much research funding out there, so in a way it makes sense that the scientific community focused on this first when global warming came into the picture.

A common theme throughout your research has been using satellite data and geodesy to unravel the secrets of our planet’s polar regions and oceans. What attracted you to this particular branch of the Earth sciences?

To be honest, I ended up in this field more or less haphazardly, it wasn’t part of a grand master plan I had when I started university. Back then, my main interest lay in aerodynamics, but by the time I had to choose a topic for my master thesis, I couldn’t imagine myself working on that for the rest of my life. When one of my supervisors suggested I work on remote sensing of sea level rise, it felt as if it was the right thing to do and that’s how it all started.
Having said that, as a kid, I was fascinated by two things: science, inspired by a nutty professor in my favorite comic books, and nature (around the age of six, I started a club together with a friend to save the planet) and in a way I’m combining these two things in my present job. So maybe I was just destined for this after all…

Also, at a time where travel has almost become a commodity to most people, I find it fascinating that there are still places on Earth where no one has ever set foot and which we can only study using remote sensing. Its very intriguing and almost a privilige to be able to map these places at an ever increasing level of detail, especially with all the dramatic changes that are now going on in the polar regions.

Quoting the late Gordon Hamilton: “Every time I open up a satellite image the potential is there for something astonishing to have happened since the last time I looked.” That sums up pretty well what makes this job so exciting, I think.

The Grace satellites in action. Credit: NASA JPL.

It’s clear that satellite data is invaluable when it comes to understanding changes on our planet. How do the GRACE and Cyosat satellites help in that effort?

GRACE is the only mission that can directly weigh the ice caps and glaciers, but it has a very coarse resolution, typically a few hundreds of kilometres. It helps to track the changes in ice mass on a regional scale, but that’s far too low to identify individual ice caps or glaciers. Cryosat-2 allows us to do so, but it measures height changes, and certain assumptions need to be made to translate this to mass changes, which can be verified against the GRACE observations. So these two missions nicely compliment each other.

Thank you for talking to us Bert. We’ll round-off this interview with a final question about careers. As a researcher who has made huge advances in this field, what advice would you give to someone who wants to pursue research in the field of geodesy and remote sensing, particularly when it comes to focusing on the planet’s polar regions?

Keep an open mind and don’t be afraid to stray outside your  own research field! Everything is connected in climate science, the polar regions aren’t an isolated system and to understand what’s going on and how to optimally use the satellite data, a basic knowledge of climate physics helps a lot.

Many problems we’re facing in geodesy and remote sensing also pop up in other fields, in a slightly different way and often other people have already found a solution to your problem. For example, to filter out the noise in the GRACE data, I used a method that’s commonly applied in atmospheric science. My second advice would be: collaborate! The problems we’re facing are so complex that it’s impossible to solve everything on your own. Interact with other scientists, within and outside your own field, it pays off.

And don’t be afraid to share your data and preliminary results with others. There’s a lot of pressure, especially on starting scientists, to publish as much as possible which sometimes makes it tempting to keep your data to yourself. But many times, other people have that piece of data that would make your study so much more interesting. And if someone else publishes a paper on something you’re working on, don’t hold any grudges, but try to find a different angle to it and do better. There’s some much to study, and science shouldn’t be about competition, but about collaboration.

Geotalk is a regular feature highlighting early career researchers and their work.

GeoTalk: Drilling into the crater which contributed to the demise of dinosaurs

GeoTalk: Drilling into the crater which contributed to the demise of dinosaurs

Six months ago, somewhere in the tropical waters off the coast of Mexico, scientists began drilling into one of the most iconic geological features on Earth: the Chicxulub crater; the 66 million year old remnants of a deadly asteroid impact, thought to have contributed to the demise of dinosaurs and most other forms of life which inhabited the Earth at the time.

Today we speak to Sonia Tikoo, Assistant Professor of Planetary Sciences, Department of Earth and Planetary Sciences, Rutgers University, and one of the researchers part of an international team which is currently trying to decipher the secrets held by the rocks of the Chicxulub crater at a core repository in Bremen.

First, could you introduce yourself and tell our readers a little more about your career path so far?

In general, my work involves using the magnetism recorded within rocks to understand problems in the planetary sciences.  I started doing research in palaeomagnetism during college but I really wanted to work in something involving space so I transitioned into planetary science during graduate school.  During my PhD at MIT, I worked on studying the palaeomagnetism of lunar rocks from the Apollo missions to understand the history of the now-extinct lunar dynamo magnetic field.  It was really cool to explore the different ways that small planetary bodies could also generate long-lived magnetic fields lasting a billion years or more.  I subsequently started studying how shock and impact cratering events affect magnetic records within rocks during my postdoc at UC Berkeley, and that experience eventually led me to the work on Chicxulub that I’m doing right now!

Meet Sonia, pictured with colleague William Zylberman, holding up some samples collected from the IODP cores.

Meet Sonia, pictured with fellow palaeomgnetist William Zylberman, holding up some samples collected from the IODP cores.

For those readers who may not be so familiar with the project, could you give us a whistle-stop tour of aims of the research and why it’s important?

In addition to being the crater linked to the demise of the dinosaurs (cool in and of itself!), Chicxulub is also the best-preserved impact structure on Earth and it is the only crater with an intact and well-defined peak ring (a ring of elevated topography within the crater that forms during the collapse stage of crater modification).  As part of IODP/ICDP Expedition 364, we are planning to address a lot of questions regarding this crater, including: (1) how peak rings (stay tuned for our paper on that which is coming out very soon!), (2) how rocks are damaged or weakened by impact shock, (3) how much hydrothermal circulation occurs after the impact, and how long it lasts, and (4) how life recovered within and above the crater following the impact and Cretaceous-Paleogene extinction?

In terms of my specific job…studying the palaeomagnetism of rocks from the crater can be used as a powerful tool to answer some of the aforementioned questions because the magnetizations within rocks can be modified by high temperatures and pressures, and new magnetic minerals can form via hydrothermal activity.  All of these things happen during large impacts on Earth and on other bodies as well, and we see these effects in the crustal magnetism of planetary surfaces.  The entire Science Party is going to be quite busy working on these problems over the next couple years.  What we learn here is not only going to tell us about Chicxulub but also about peak-ring basins across the solar system, and as a planetary scientist I find that angle to be particularly exciting.

What is your role specific role in the project?

Sonia is pictured drilling into cores from the IODP 364 Expedition, to collect smaller samples for palaeomagnetic experiments.

Sonia is pictured drilling into cores from the IODP 364 Expedition, to collect smaller samples for palaeomagnetic experiments.

I’m serving as a palaeomagnetist on the expedition.  There are two groups of scientists associated with Expedition 364 – the Offshore Science Party (the team that recovered the core at sea) and the Onshore Science Party (the team that conducts sampling and preliminary analyses here in Bremen). There wasn’t a magnetometer on the drilling vessel, so I became a member of the Onshore Science Party.  My job here is to collect samples and develop a first-pass dataset of measurements that characterizes the magnetization of the various rock units in the core, spanning both the post-impact sediments and the underlying impactite rocks. The sediment data will eventually be used for magnetostratigraphy and to develop an age model for the post-impact period, and the impactite data gives us a sneak peek at what we will be working with in much greater detail during our post-expedition research as we try to understand the different types of magnetization present in the crater’s peak ring.

So, the experiments are taking place right as we speak?! Can you tell us more about what it is like working at the core repository?

Yes, they are running right now!  Working on an IODP/ICDP expedition is a totally intense, totally rewarding experience!  The Onshore Science Party here in Bremen involves around 45 members of the Onshore Science Party and a team of IODP scientists and technicians working together continuously for a month.

First, one team splits the large drill core into halves.  The core halves then get passed onto teams that do detailed visual descriptions of the cores and some physical properties measurements.

Then the core goes to the sampling room, where we collect specimens for both the immediate measurements we are conducting here in Bremen as well as for the post-expedition research that the Science Party members will be conducting at their home institutions.

Starting bright and early at 7:30 every morning, I drill and prepare sample plugs for moisture and density, P-wave, and paleomagnetic analyses. In the afternoons, I usually shift over to processing magnetic data and writing reports while another paleomagnetist, William Zylberman, conducts measurements in the lab.

The final IODP report writing team. (Credit: Sonia Tikoo)

The final IODP report writing team. (Credit: Sonia Tikoo)

Of course, every other team like physical properties, petrology, biostratigraphy, or geochemistry is doing the same kind of fast-paced work in their own way and we’re always comparing notes and taking advantage of our built-in collaborations. Some scientists have been working on Chicxulub or the K-Pg boundary for decades and others of us (like me!) are first-timers.

There is a fantastic energy associated with having so many talented scientists with all these different avenues of expertise working closely together (and trying to get everything done before our month here is over)!

 

If you want to learn more about the IODP Expedition and associated research, you’ll find some resources here:

 

Geotalk is a regular feature highlighting early career researchers and their work.

This calls for a celebration: GeoLog’s 1000 post!

This calls for a celebration: GeoLog’s 1000 post!

As far as blogging milestones go, today is pretty special. This is GeoLog’s 1000 post!

Since the EGU’s official blog launched back in March 2010 (that’s right, there’s over 6 years of back catalogue for you to enjoy!), we’ve shared posts about research spanning almost every discipline in the Earth sciences; highlighted member’s adventures in the field and showcased the work of outstanding early career scientist. We’ve not shied away from contentious topics and shone a light on some of the most fascinating processes which shape our planet, as well as bringing you the latest from our annual General Assembly.

To celebrate, we’ve come up with a list of some posts which highlight the diversity of content published in the blog over the past six and a half years. Because selecting the best of the blog would be too hard a task, we’ve chosen to feature some of the Executive Office’s favourite posts, as well as some of the most viewed posts since we started recording statistics about the blog back in 2012.

Bárbara Ferreira, the EGU’s Media and Communications Manager says “It’s hard to pick your favourites from amongst 1000 blog posts, published over 6.5 years of the EGU’s blog existence, so I will highlight a few ‘firsts’ instead.”

Imaggeo on Mondays is the longest running regular column on the blog, having started in February 2011. Weekly, we highlight a photo from the EGU’s open-access image repository, Imaggeo.

“The very first featured image was an asphalt volcano from the Gulf of Mexico,” explains Bárbara.

Not surprisingly, one of the most popular posts in GeoLog’s history is also an Imaggeo on Mondays post. Could it be any other way when the April 2013 post highlighted one of the most emblematic geological features in the world? Sarah Connors, the EGU’s Policy Fellow is also a fan of Imaggeo on Mondays.

Left: Asphalt volcano off the Gulf of Mexico . Credit: Marum. Right: href=" http://imaggeo.egu.eu/view/527/"> Grand Prismatic spring . Credit: David Mencin (both images distributed via imaggeo.egu.eu).

Left: Asphalt volcano off the Gulf of Mexico . Credit: Marum. Right: Grand Prismatic spring . Credit: David Mencin (both images distributed via imaggeo.egu.eu).

“It gives me the opportunity to learn facts about research areas that differ from my own background (atmospheric chemistry). I particularly liked ‘A rolling stone gathers no moss’ which taught me about large shifting landmasses and what effects this can have on the surrounding rock (it can create swirls of different rock types),” explains Sarah.

Geosciences Columns cover recent research in the Earth, planetary and space sciences. Usually, but not always, the research featured is published in one of our open access journals, and presented in a language that is accessible to all. November 2011 was the birth-month of this popular series and featured research about how the Vikings used a transparent variety of calcite, called Iceland spar, to navigate.

“Managing the EGU’s social media presence is one of my [Laura Roberts, EGU Communications Officer] tasks, so I’m always interested in learning what applications social media might have in the context of the Earth sciences. A Geosciences Column published back in February 2013 is one of my favourites as it showcases how social networks to respond to earthquakes.”

Fast forward to July 2012 and another of our long-established columns got underway: GeoTalk, featuring a short Q&A with a geoscientist, often an early career scientist (ECS).

“We started with an interview with Guillermo Rein about his research on the largest fires on Earth and how they contribute to greenhouse gas emissions,” says Bárbara, and adds “all three columns [GeoTalk, Geosciences Columns and Imaggeo on Mondays] are ongoing to this day.”

More recently, Sarah (Policy Fellow) started our newest column: GeoPolicy, which focuses on informing the scientific community on European policy, the scientists contributing to this process, and how other researchers could play a role in influencing policy making.

“So far, it’s been a great experience and I’ve got to write about some interesting topics. I think my favourite post is the ‘How to communicate science to policy officials – tips and tricks from the experts’, which covers a science policy session at the EGU General Assembly 2016. The post summarises key communication tips for researchers wanting to engage with policy officials,” describes Sarah.

While preparing this post we realised our readers enjoy discovering more about subjects which are timely and ‘hot’ at the time of publication. A post about Iceland’s Bárðarbunga-Holuhraun and its remarkable volcanic eruption, which went live not long after the eruption and showcased new research presented at our General Assembly, is among the most popular on the blog. Tapping into slightly niche subjects also proved a hit among the GeoLog audience. Who knew a story about spitfires and geophysical archaeology in Burma would be our most read post ever?

GeoLog is also a place to find resources on all things related to career, science communication, academic writing and personal development. We’ve featured how-to-guides on how to apply for research grants, prepare for your next interview and most recently how to pitch your research to a journalist. Among the most popular posts on the blog is one packed with tips and tricks on how to prepare THE best job application.

It wouldn’t be fair to celebrate this special occasion without sending a big thank you to all our guest authors, who over the past six and a bit years have contributed a range of informative, entertaining and insightful posts. We always welcome guest contributions, so if you would like to submit a post, please do get in touch!

Last, but absolutely not least, a big thank you to all our readers! We hope you continue to enjoy GeoLog. Here is to the next 1000 posts!

Follow

Get every new post on this blog delivered to your Inbox.

Join other followers: