GeoLog

EGUecs

EGU announces 2018 awards and medals

EGU announces 2018 awards and medals

From 8th to the 14th October a number of countries across the globe celebrate Earth Science Week, so it is a fitting time to celebrate the exceptional work of Earth, planetary and space scientist around the world.

Yesterday, the EGU announced the 49 recipients of next year’s Union Medals and Awards, Division Medals, and Division Outstanding Early Career Scientists Awards. The aim of the awards is to recognise the efforts of the awardees in furthering our understanding of the Earth, planetary and space sciences. The prizes will be handed out during the EGU 2018 General Assembly in Vienna on 8-13 April. Head over to the EGU website for the full list of awardees.

Nineteen out of the total 49 awards went to early career scientists who are recognised for the excellence of their work at the beginning of their academic career. Fifteen of the awards were given at Division level but four early career scientists were recognised at Union level, highlighting the quality of the research being carried out by the early stage researcher community within the EGU.

Nine out of the 49 awards conferred this year recognised the work of female scientists. Of those, four were given to researchers in the early stages of their academic career (at the Division level).

As a student (be it at undergraduate, masters, or PhD level), at the EGU 2017 General Assembly, you might have entered the Outstanding Student Poster and PICO (OSPP) Awards. A total of 57 poster contributions by early career researchers were bestowed with a OSPP award this year recognising the valuable and important work carried out by budding geoscientists. Judges took into account not only the quality of the research presented in the posters, but also how the findings were communicated both on paper and by the presenters. Follow this link for a full list of awardees.

Further information regarding how to nominate a candidate for a medal and details on the selection of candidates can be found on the EGU webpages. For details of how to enter the OSPP Award see the procedure for application, all of which takes place during the General Assembly, so it really couldn’t be easier to put yourself forward!

The EGU General Assembly is taking place in Vienna, Austria from 8  to 13 April. The call-for-abstracts will open in mid-October. Submit yours via the General Assembly website.

Academia is not the only route: exploring alternative career options for Earth scientists

Academia is not the only route: exploring alternative career options for Earth scientists

With more PhD and postdoc positions than there are tenured posts, landing a permanent job in academia is increasingly challenging. For some, years of funding and position uncertainty, coupled with having to relocate regularly is an unwelcome prospect. A changing job market also means that aspiring to the traditional, linear career path might be an unrealistic expectation. Skills acquired by those striving for an academic career (analytical skills, time and project management, persistence – writing a thesis requires it by the bucketload!) are highly valued in other job sectors too.

During a short course at the 2017 General Assembly, a panel of current and former geoscientists discussed their experiences in jobs both inside and outside academia.  They offered tips for how to pursue their careers paths and what skills served them best to get there.

In this blog post we profile each of their jobs and offer some of the highlights from the advice given during the session at the conference.


During the panel discussion Victoria stressed the importance of building a strong professional network, both inside and out of academia.

Victoria O’Connor (Technical Director at Petrotechnical Data Systems)

Victoria gained an undergraduate master degree in geology from the University of Liverpool in 2007. Since then, her career has focused around the oil industry, but has seen twists and turns, which have relied heavily on her building a varied skill set.

For almost six years after graduation, Victoria worked at Rock Deformation Research Ltd (RDR),  a spin out company from the University of Leeds, which was eventually acquired by Schlumberger. She held various roles throughout her time there, eventually becoming Vice President. The role relied heavily on her technical expertise as a structural geologist, as well as people management and organisational skills. In 2013, she moved to The Netherlands to work the Petrel technology team at Shell, where she managed various geoscience software development projects.

Her experience eventually enabled her to set up her own geoscience consulting company which was acquired by the PDS Group, through which she now manages the Geoscience products and services division, leading a 40 strong team of geoscientists and scientific software developers, developing cutting edge technologies for the oil and gas industry in collaboration with various academic institutions. In addition she also holds a visiting researcher position at the University of Leeds where she provides teaching and consultancy support. In addition, she also edits the European region AAPG newsletter.

During the panel discussion, Victoria stressed the importance of building relationships and developing a network of contacts. The benefits of building a strong professional network, both inside and out of academia are far reaching: job opportunities, joint collaborations, career development prospects. In her current role, she is developing technology with academic partners she first met over ten years ago at the University of Leeds.


getting on the career To get on the career ladder make sure you have a well written cover letter and CV, says Philip.

Philip Ball (Strategic Planning and Optimization Team & Geological Specialist [Rifted Margins] at Saudi Aramco)

Philip’s career certainly falls in the windy road category, rather than the linear path. It has involved a number of switches between industry and academic positions which have taken him all over the globe. His positions have always had an oil industry focus. He has lived through a number of market slumps, resulting in redundancies and an uncertain career path at times.

During the panel discussion Philip, highlighted adaptability and flexibility (skills certainly gained during research years) as a key to his success. Landing his first position was partly down to his willingness to be flexible.  In addition to being proactive, publishing, attending conferences and meetings, maintaining a network, never giving up is also critical. For example, he applied three times to Statoil between 2013 and 2015 before he managed to get an interview.

Before progressing onto a PhD, Philip enjoyed a short stint at the British Geological Survey and was a geologist for Arco British Ltd. Since gaining his PhD from Royal Holloway, University of London in 2005, Philip has held a number of positions at oil companies, including StatOil, ConocoPhillips, ONGC Videsh and Saudi Aramco.

His top tips, for getting on the career ladder is to make sure you have a well written cover letter and CV. This is critical whether applying for a student travel grant, research position or a position outside of the academic realm. Also do your research and do not expect chances to come to you. Use and visit the job boards online regularly to find positions in geoscience or other fields.


A career in the publications industry is a popular choice among researchers, like Xenia.

Xenia van Edig (Business Development at Copernicus.org)

Researchers are necessarily familiar with the world of academic publication (for more tips on how journal editors work take a look at this post we published recently), so it is hardly surprising this ends up being the chosen career of many former scientists.

Xenia Van Edig is one such example. Following an undergraduate in geography and PhD  in agricultural sciences at Georg-August-Universität-Göttingen, Xenia took a sidestep into the world of scientific coordination and management before starting her role at Copernicus (publishers of open access journals – including all the EGU publications – and conference organisers).

Project management was a skill set Xenia developed throughout her time as a junior researcher. It has been a pillar stone of her career outside of academia too.


Robert is an example of how a a hobby can become a new career direction.

Robert McSweeney (Science Editor at Carbon Brief)

Robert holds an MEng in mechanical engineering and an MSc in climate change. He worked for eight years as an environmental scientist for Atkins, a global design, engineering and project management firm.

For the past three years he’s been working as a science writer for Carbon Brief  – a website covering the latest developments in climate science, climate policy and energy policy – where he is now science editor. The role relies heavily on Robert’s communications skills, which scientists hone throughout their research career in the form of presentations at conference and to peers.

Robert highlighted how a hobby – in this case, writing – can become a new career direction. He also emphasised that scientists have a lot of opportunities to get involved with communicating their research, and commenting on others’, through blogs, Twitter, and developing extra materials to publish with new papers.


You don’t necessarily have to stick within your original field of expertise

Steven Gibbons (Senior Research Geophysicist at NORSAR)

Perhaps the best hybrid career for a researcher is to be able to continue to investigate, but not necessarily in an academic setting. It’s a nice compromise for those seeking a little more stability than life at traditional research institution might offer. But the notion shouldn’t be viewed with rose tinted glasses either: being an industry/foundation based scientists might mean less independence when it comes to selecting research topics and, often, securing funding is still an important part of the equation.

Nevertheless, it is can be a rewarding career which gives insights into a more commercial mindset and which draws on skills gain throughout academic research years, as Steven Gibbons described during the short course in April.

Crucially, his career trajectory highlights that you don’t necessarily have to stick within your original field of expertise. Steven has a PhD in core geodynamics and the Earth’s magnetic field, but now works as a geophysicist within the programme for Array Seismology and Test-Ban-Treaty Verification at NORSAR.

Steven has an undergraduate and PhD from the University of Leeds and has been working for NORSAR since 2002.


The EGU’s 2018 General Assembly, takes place in Vienna from 8 to 13 April, 2018. For more news about the upcoming General Assembly, you can also follow the offical hashtag, #EGU18, on our social media channels.

GeoTalk: Meet the EGU’s President, Jonathan Bamber

GeoTalk: Meet the EGU’s President, Jonathan Bamber

GeoTalk interviews usually feature the work of early career researchers, but this month we deviate from the standard format to speak to Jonathan Bamber, the EGU’s President. Jonathan has a long-standing involvement with the Union, stretching back almost 20 years. Following a year as vice-president, Jonathan was appointed President at this year’s General Assembly in Vienna. Here we talk to him about his plans for the Union, how scientists can stand up for science at a time when it is coming under attack and how the Union plans to foster the involvement of early career scientists (ECS) in its activities.

In the unlikely event that some of our readers don’t know who you are, could you introduce yourself and tell us a little about your career path so far and also about your involvement with the EGU over the years?

I started out with a degree in Physics. I’ve spent the last 20 years in the geography department at the University of Bristol focusing on Earth Observation. In that time, I’ve covered a lot of topics: from oceanography to land surface processes, but glaciology is my core discipline and research area. Most of my work has broadly been in the area of climate change and climate research but also solid Earth geophysics.

I’ve been involved with EGU (actually, it was EGS then) since the late 90s. I used to attend the meetings and I realised there was a gap in the market for cryospheric sciences. I approached Arne Richter [the former General Secretary of EGS] to form the Division of Cryospheric Sciences. I put together a proposal and became secretary of the division at the time and later became president of the division when EUG & EGS merged to form EGU. I spent five years in that role, towards the end of which I proposed (and launched) the open access journal The Cryosphere, which just celebrated its 10th anniversary and publishes about 220 papers per year.  I’m very proud of those contributions to the community and feel that they have helped develop the discipline and strengthen it.

It was 2007 when I stepped down from the EGU Council all together although I still attended the General Assembly, of course, and convened various sessions. It was 2015 when the then EGU vice-president, Hans Thybo, suggested I stand in the next presidential elections. I wasn’t at all certain I wanted to take on the role, but decided to go for it because I think it is important to serve the scientific community and colleagues and EGU is an organisation that is close to my heart.

At this year’s General Assembly, you were appointed Union President (after serving as Vice-President for a year). What are the main things you hope to achieve during your two-year term?

There are two main areas that I am very keen to promote and foster:

First, I want to make the organisation [the EGU] more attractive to early career scientists (ECS) and offer them more opportunities, be that more and better short courses, career support and other benefits of attending. For some years now there has been a strong ECS network within the Union and there have been great advances in that direction already.

Second, I’d like to increase the EGU’s opportunities, and those of members, to be involved in policy activities.

Why those two in particular?

There are many things one could do; but having attended the General Assembly for 15 years, there is no doubt that ECS are the future of the discipline, so if we don’t make the meeting attractive and useful for them, what are we here for?

In terms of policy, there are a number of events which have happened in the past few years which make it come into focus.

Certainly, in the UK, it is important that the science we do has impact, and just as important is that we [researchers] understand what the impact of the research we do has. Ultimately, tax payers pay for the research we do, so it is important not to get detached from the role we have in benefiting society in broad terms but also through specific opportunities and activities.

From many years attending the AGU Fall Meeting, I am aware the American Geophysical Union (AGU) has a very well developed and successful policy related programme. It is, of course, simpler for them, as the policy landscape is restricted to one nation and AGU’s headquarters are in Washington. Nonetheless, despite those differences, EGU is not, currently, providing opportunities for engagement in the policy realm in the way we could, for example, with the European Commission and its funding instruments.

Science for policy is not suited to all scientists, and all disciplines that we represent. However, it is important for a large cohort of our membership.

EGU President, Jonathan Bamber (centre left) and EGU Vice-President, Hans Thybo (centre right), stand along side the 2016 EGU Outstanding Student Poster and PICO (OSPP) awardees. Credit: EGU/Pflugel

ECS make up a significant proportion of the Union’s membership. EGU is a bottom up organisation and there is no doubt that ECS have a say in many matters of the Union already, but how do you plan on including ECS further in decision-making processes in the future?

I wouldn’t necessarily classify ECS separately. They are simply geoscientists, just like the majority of our members. It is important, however, for us to show them and highlight the opportunities available for them to be involved in the General Assembly and the Union as a whole.

We have a Union-wide ECS Representative on Council – this gives ECS a good understanding of how the organisation works and gives the individual experience of the machinery involved in running all the activities of EGU. Roles like this give the next generation skills to take on leadership roles in the future too. How do they know how organisations operate if they don’t have opportunities like this?

There are also no barriers to them being involved in convening sessions, organising short courses and proposing activities for the Union to prepare.

It can be intimidating as a junior scientist to be involved in these activities, so it’s important that we make it accessible to them. I think we are making great progress in this direction.

As an established scientist, what advice would you give ECS starting out in their career?

Accountancy pays very well!

More seriously: get involved!

Also, look at your most successful and respected senior colleagues and identify what about them makes them successful and what do you admire in them. Positive role models are very important.

Recently, the scientific process has come under attack. Initiatives such as the March For Science have given scientists opportunities to make their voices heard. What role can the Union play in supporting members wanting to stand up for science?

We can put together advice for how scientists can get their voice heard. The Union’s Outreach Committee is quite active in this regard already.

Trying to make sure that the voice of the geoscience community is heard within Europe is another area where we can contribute. We’ve been involved in an EU Parliamentary meeting, representing EGU, where discussions focused on improving the integration of science and collaboration across Europe.

We also offer policy makers and institutions the opportunities to contact scientists, through our database of experts.  We need to make European policy-makers more aware that we can provide that service.

In terms of funding for scientific research, we’ve established links with the President of European Research Council. Jean-Pierre Bourguignon gave a talk at this year’s General Assembly and participated in one of our Great Debates. We also hosted a meeting where senior members of the EGU’s council met with Bourguignon to discuss how the EGU could support the ERC in the future.

As an organisation, it should be our goal to provide our members with a mechanism by which they can communicate with the European Commission and policy-makers.

Last month, the EGU issued a statement condemning President Trump’s decision to pull the USA out of the Paris Climate Agreement. Why is this decision so troubling and, in your opinion, what can Union members do to raise awareness of the challenges facing the globe?

We should communicate the importance of our science: what we know, what we understand, the evidence based facts.

In the absence of evidence based science, how do policy makers reach decisions? They rely on gut instinct, on beliefs, on prejudices… But they should be making them on evidence based science. So, it is crucial that we communicate what we know to the public and policy-makers.

In Europe, a large majority don’t question human influence on climate. They understand it is real and that it’s an issue of upmost importance.

Trump’s decision was about politics not science; it is important to remember that. He didn’t deny that climate change was real, but he was making the decision on an economic basis and that is something else again. Whether it was a wise economic decision or an entirely myopic one is another question altogether.  I speak about this in more detail in an open editorial I wrote shortly after the decision was announced.

Geoscientists are, perhaps, more important in terms of policy and the health of the planet than they ever have been before. All the work we are doing in the geosciences has huge implications for policy and for safeguarding our future on the planet.

Jonathan, thank you for talking to me today about a whole range of topics. I’d like to finish this interview by bringing the conversation back around to EGU. We’ve discussed, at some length, what the Union hopes to do for its members and highlighted that there are plenty of opportunities to get involved. So, how exactly do they go about taking a more active role in the Union’s activities?

One of the easiest ways to have your voice heard is by getting involved through your scientific division. Attend your division(s)’s business meeting. Each division has quite a few officers: a secretary, vice-president, secretaries for sub disciplines and so on. There are lots of opportunities there. In general, anyone who wants to put the time in will be welcomed by division presidents because it’s always good to have enthusiastic, dedicated volunteers.

When it comes to the General Assembly in Vienna, anybody can propose a session. If you want to organise a session or a short course, just fire it out there! The call-for-sessions is currently open [until 8th September]. You’ll find all the details online.

If you are interested in policy-related activities do complete the register of experts questionnaire.  It doesn’t take long and you’ll find details on our webpages. Make sure you provide as much detail about your expertise as possible. That way we’ll be able to match you up with those who make inquires and opportunities in the most effective way.

Interview by Laura Roberts Artal (EGU Communications Officer)

 

 

 

 

Enmeshed in the gears of publishing – lessons from working as a young editor

Enmeshed in the gears of publishing – lessons from working as a young editor

Editors of scientific journals play an important role in the process research publication. They act as the midpoint between authors and reviewers, and set the direction of a given journal. However, for an early career scientist like me (I only defended my PhD in early December 2016) the intricacies of editorial work remained somewhat mysterious. Many academic journals tend to appoint established, more senior scientists to these roles, and while most scientists interact with editors regularly their role is not commonly taught to more junior researchers. I was fortunate to get the chance to work, short term, as an associate editor at Nature Geoscience in the first 4 months of this year (2017). During that time, I learned a number of lessons about scientific publishing that I felt could be valuable to the community at large.

What does an editor actually do?

The role of the editor is often hidden to readers; in both paywalled and open-access journals the notes and thoughts editors make on submitted manuscripts are generally kept private. One of the first things to appreciate is that editors judge whether a manuscript meets a set of editorial thresholds that would make it appropriate for the journal in question, rather than whether the study is correctly designed or the results are robust. I’d argue most editors are looking for a balance of an advance beyond existing literature and the level of interest a manuscript offers for their audience.

At each step of the publication process, from initial submission, through judging referee comments, to making a final decision, the editor is making a judgement whether the manuscript still meets those editorial thresholds.

The vast majority of the papers I got the chance to read were pretty fascinating, but since the journal I was working for is targeted at the whole Earth science community some of these were a bit too esoteric, and as such didn’t fit the thresholds we set to appeal to the journal audience.

I actually found judging papers on the basis of editorial thresholds refreshing – in our capacity as peer reviewers, most scientists are naturally sceptical of methodology and conclusions in other studies, but as an editor in most cases I was able to take the authors conclusions at face-value, and leave the critical assessment to referees.

That’s where the important difference lies; even though editors are generally scientists by training, since they are naturally not experts in every field that they receive papers from, it’s paramount to find reviewers who have the appropriate expertise and to ask them the right set of questions. In journals with academic editors, the editors may have more leeway to make critical comments, but impartiality is key.

Much of this may be already clear to many readers, but perhaps less so to more junior scientists. Many of the editorial decisions are somewhat subjective, like gauging the level of interest to a journal audience.

In the context of open access research journals, I think it’s worth asking whether the editorial decisions should also be made openly readable by authors and referees – this might aid potential authors in deciding how to pitch their articles to a given journal. This feeds into my next point – what are journals looking for?

By which metrics do journals judge studies?
The second big thing I picked up is that the amount of work does not always equate to a paper being appropriate for a given journal. Invariably, authors have clearly worked hard, and it’s often really tricky to explain to authors that their study is not a good fit for the journal you’re working for.

Speaking somewhat cynically, journals run for profit are interested in articles that can sell more copies or subscriptions. Since the audiences are primarily scientists, “scientific significance” will be a dominant consideration, but Nature and subsidiary journals also directly compare the mainstream media coverage of some of their articles with that of Science – that competition is important to their business.

Many other authors have discussed the relative merits of “prestige” journals (including Nobel prize winners – https://www.theguardian.com/science/2013/dec/09/nobel-winner-boycott-science-journals), and all I’ll add here is what strikes me most is that ‘number of grad student hours worked’ is often not related to those articles that would be of a broader interest to the more mainstream media. The majority of articles don’t attract media attention of course, but I’d also argue that “scientific significance” is not strongly linked to the amount of time that goes into each study.

In the long run, high quality science tends to ensure a strong readership of any journal, but in my experience as an editor the quality of science in submitted manuscripts tends to be universally strong – the scientific method is followed, conclusions are robust, but in some cases they’re just pitched at the wrong audience. I’d argue this is why some studies have found in meta-analysis that in the majority of cases, articles that are initially rejected are later accepted in journals of similar ‘prestige’ (Weller et al. 2001, Moore et al. 2017).

As such, it’s imperative that authors tailor their manuscripts to the appropriate audience. Editors from every journal are picking from the same pool of peer reviewers, and so the quality of reviews should also be consistent, which ultimately determines the robustness of a study; so to meet editorial thresholds, prospective authors should think about who is reading the journal.
It’s certainly a fine line to walk – studies that are confirmatory of prior work tend to attract fewer readers, and as such editors may be less inclined to take an interest, but these are nonetheless important for the scientific canon.

In my short time as an editor I certainly didn’t see a way around these problems, but it was eye-opening to see the gears of the publication system – the machine from within, as it were.

Who gets to review?
One of the most time-consuming jobs of an editor is finding referees for manuscripts. It generally takes as long, if not far longer, than reading the manuscript in detail!

The ideal set of referees should first have the required set of expertise to properly assess the paper in question, and then beyond that be representative of the field at large. Moreover, they need to have no conflict of interest with the authors of the paper. There are an awful lot of scientists working in the world at the moment, but in some sub-fields it can be pretty hard to find individuals who fit all these categories.

For example, some studies in smaller research fields with a large number of senior co-authors often unintentionally rule out vast swathes of their colleagues as referees, simply because they have collaborated extensively.

Ironically, working with everyone in your field leaves no-one left to review your work! I have no doubt that the vast majority of scientists would be able to referee a colleagues work impartially, but striving for truly impartial review should be an aim of an editor.

As mentioned above, finding referees who represent the field is also important. More senior scientists have a greater range of experience, but tend to have less time available to review, while junior researchers can often provide more in-depth reviews of specific aspects. Referees from a range of geographic locations help provide diversity of opinion, as well as a fair balance in terms of gender.

It was certainly informative to compare the diversity of authors with the diversity of the referees they recommended, who in general tend to be more male dominated and more US-centric than the authors themselves.

A positive way of looking at this might be that this represents a diversifying Earth science community; recommended referees tend to be more established scientists, so greater author diversity might represent a changing demographic. On the other hand, it’s certainly worth bearing in mind that since reviewing is increasingly becoming a metric by which scientists themselves are judged, recommending referees who are more diverse is a way of encouraging a more varied and open community.

What’s the job like?
Editorial work is definitely rewarding – I certainly felt part of the scientific process, and providing a service to authors and the readership community is the main remit of the job.

I got to read a lot of interesting science from a range of different places, and worked with some highly motivated people. It’s a steep learning curve, and tends to be consistently busy; papers are always coming in, so there’s always a need to keep working.

Perhaps I’m biased, but I’d also suggest that scientists could work as editors at almost any stage in their careers, and it offers a neat place between the world of academia and science communication, which I found fascinating.

By Robert Emberson, freelance science writer

References

Moore, S., Neylon, C., Eve, M. P., O’Donnell, D. P., and Pattinson, D. 2017. “Excellence R Us”: university research and the fetishisation of excellence. Palgrave Communications, 3, 16105

Weller A.C. 2001 Editorial Peer Review: Its Strengths and Weaknesses. Information Today: Medford NJ