GeoLog

Climate

Imaggeo on Mondays: Symbiosis of ice and water

Imaggeo on Mondays: Symbiosis of ice and water

This mesmerising photograph is another of the fabulous finalists (and winner) of the 2017 imaggeo photo contest. Imaggeo is the EGU’s open access image repository. It’s a great place to showcase your photographs; so whether you are stuck in the lab this summer, frantically typing away at a paper, or are lucky enough to be in the field, be sure to submit your photographs for all EGU members to see. You never know, we might choose to feature it on the blog too!

This picture was taken at Storforsen, an impressive rapid in the Pite River in northern Sweden. That day, the sinking sun illuminated the whole area with warm reddish colors which formed a contrast to the remains of the long-lasting winter period. The rapid is located close to the site of a temporary seismological recording station which is part of the international ScanArray project. Within that project we focus on mapping the crustal and mantle structure below Scandinavia using a dense temporary deployment of broadband seismometers.

By Michael Grund, Karlsruher Institut für Technologie (KIT)

Imaggeo is the EGU’s online open access geosciences image repository. All geoscientists (and others) can submit their photographs and videos to this repository and, since it is open access, these images can be used for free by scientists for their presentations or publications, by educators and the general public, and some images can even be used freely for commercial purposes. Photographers also retain full rights of use, as Imaggeo images are licensed and distributed by the EGU under a Creative Commons licence. Submit your photos at http://imaggeo.egu.eu/upload/.

 

Imaggeo on Mondays: Nor’Wester in the Southern Alps of New Zealand

Imaggeo on Mondays: Nor’Wester in the Southern Alps of New Zealand

Stephan Winkler’s 2017 Imaggeo Photo Contest finalist photo showcases an unusual weather phenomenon…

The image shows a typical weather situation in the Southern Alps of New Zealand with a moist, westerly airflow pushing over the Main Divide [which separates the water catchments of the more heavily populated eastern side of the island from those on the west coast] to create a typical foehn wind [dry and warm winds which form on the downside of a mountain range] pattern (locally called Nor’Wester) in the region. Immediately west of this Main Divide, annual precipitation of up to 15,000 mm has been estimated.

The upper part of Tasman Glacier, as other glaciers around and immediately east of the Main Divide, receive impressive amounts of snow due to an overspill effect and can still be regarded as maritime.

In the image, however, the situation is displayed when right at the Main Divide the clouds disappear due to increasing temperatures when flowing over the Divide. The foehn wind developing with such weather pattern can be very strong. However, the image nicely shows how the glaciation of the central Southern Alps is influence by the availability of moisture and the dynamic character of the regional climate.

Description by Stephan Winkler (Senior Lecturer in Quaternary Geology and Palaeoclimatology at the University of Canterbury), as published previously on imaggeo.egu.eu

Imaggeo is the EGU’s online open access geosciences image repository. All geoscientists (and others) can submit their photographs and videos to this repository and, since it is open access, these images can be used for free by scientists for their presentations or publications, by educators and the general public, and some images can even be used freely for commercial purposes. Photographers also retain full rights of use, as Imaggeo images are licensed and distributed by the EGU under a Creative Commons licence. Submit your photos at http://imaggeo.egu.eu/upload/.

 

Imaggeo on Mondays: Tongue of a small giant

Imaggeo on Mondays: Tongue of a small giant

In a world where climate change causes many mountain glaciers to shrink away, bucking the ‘melting’ trend is not easy. In today’s post, Antonello Provenzale, a researcher in Italy, tells us of one glacier in the Alps which is doing just that.

Mountain glaciers are retreating worldwide, with the possible exception of the Karakoram area. For most glaciers, ablation (ice melt) during the warm season is stronger than the accumulation of new ice by snowfall. As a result, while glacier ice flows downhill, the accelerated melting at lower elevation forces the terminus of the glacier to retreat uphill, with a net loss of ice volume.

Such behavior is especially evident on the southern flank of the Alps, where many mountain glaciers have dramatically reduced their dimensions, often fragmenting into smaller, detached pieces.

An important exception is represented by the Miage glacier in Val Veny, Val d’Aosta, northwestern Italy, at the base of the Mount Blanc massif. This glacier is covered with a thick layer of debris, which protects the underlying ice from the direct heating by sunlight. The rocks which make up the debris are poor heat conductors and thus preserve the ice beneath them, making this glacier particularly stable.

This glacier is so stationary that vegetation and trees have grown on its margins and on the debris. Several ponds punctuate the surface of the glacier, as well as some areas on its sides. The Miage lake, for example, is directly in contact with the slowly flowing ice and it is sometimes run by large outburst waves generated by huge blocks of ice and rock falling into the lake water.

This picture was taken in September 2014, during a field excursion of the Italian Glaciological Committee. The image is a composition (stitch) of several images taken with a moderate wide angle lens on a rangefinder digital camera.

By Antonello Provenzale studies Geophysical Fluid Dynamics, Earth System processes and Geosphere-Biosphere interactions at the Institute of Geosciences and Earth Resources of the National Research Council of Italy.

Imaggeo is the EGU’s online open access geosciences image repository. All geoscientists (and others) can submit their photographs and videos to this repository and, since it is open access, these images can be used for free by scientists for their presentations or publications, by educators and the general public, and some images can even be used freely for commercial purposes. Photographers also retain full rights of use, as Imaggeo images are licensed and distributed by the EGU under a Creative Commons licence. Submit your photos at http://imaggeo.egu.eu/upload/.

Imaggeo on Mondays: Salt shoreline of the Dead Sea

Imaggeo on Mondays: Salt shoreline of the Dead Sea

This beautiful aerial image (you’d be forgiven for thinking that it was a watercolour) of the Dead Sea was captured by a drone flying in 100m altitude over its eastern coastline.

Climate change is seeing temperatures rise in the Middle East, and the increased demand for water in the region (for irrigation) mean the areas on the banks of the lake are suffering a major water shortage. As a result, the lake is shrinking at an alarming rate. Currently, it is shrinking by over 1m/year. The image was captured as part of a survey in the wider project DESERVE (Kottmeier et al. 2016) addressing the environmental changes accompanying the lake level drop.

In this case, the special focus is to look for e.g. submarine springs or other geomorphological evidence in the shallow lake water that can later turn into hazardous sinkholes (cf. recent publication on that topic Al-Halbouni et. al. 2017). Learn more about the environmental challenges and geohazard risks the region faces in this December 2016 Imaggeo on Mondays post.

The round features see in this image, nevertheless have been identified as salt accumulations following basically the sinusoidal shoreline.

The different colours of the lake indicate water of varying densities, e.g. fresh water floating on top of saltier water and possible sediments inside.

The shoreline appears with different colours each year depending on the sediment mud & evaporite material. Each line represents the retreat of a given year!

[Editor’s note: this image was a finalsit in the 2017 Imaggeo Photo Contest]

By Laura Robert and Djamil Al-Halbouni of the German Research Center for Geosciences, Physics of the Earth, Potsdam, German

Imaggeo is the EGU’s online open access geosciences image repository. All geoscientists (and others) can submit their photographs and videos to this repository and, since it is open access, these images can be used for free by scientists for their presentations or publications, by educators and the general public, and some images can even be used freely for commercial purposes. Photographers also retain full rights of use, as Imaggeo images are licensed and distributed by the EGU under a Creative Commons licence. Submit your photos at http://imaggeo.egu.eu/upload/.

 

Follow

Get every new post on this blog delivered to your Inbox.

Join other followers: