GeoLog

GeoEd

GeoEd: Do as I say… AND as I do

GeoEd: Do as I say… AND as I do

Bridging the gap between student and teacher is not always easy. For students, the educator might seem ‘untouchable’ and inaccessible. A sense exacerbated when assignments are set and they turn out to be new, complex and unfamiliar. In this new installment of our GeoEd column, regular guest blogger Rhian Meara of Swansea University, discusses a simple approach to overcome some of these barriers, which can yield surprisingly positive results.

As teachers, lecturers and professors, it’s easy to forget quite how scary it is to be an undergraduate student. Everything is new – lectures, seminars, practical classes, buildings, cities, and friends. Workloads are increasing and expectations are much higher than at school. We can also be guilty of setting and marking coursework based on our present professional standards including expectations that students will automatically understand what is expected of them. The fallout of this is that students can get overwhelmed, scared to ask questions and plough on despite not understanding what is required of them.

During the last few years, I have taught on a second year module which includes a literature review as part of the continuous assessment. Students attend lectures, workshops and tutorials to learn what a literature review is and how to write their own reviews. However, despite the extensive preparation, there is a communication barrier and a task as simple as a literature review (to the staff) is a monumental and incomprehensible task (for the undergraduates). The students have a tendency to get incredibly hung up on the fact that a literature review is “not an essay” rather than understanding what it actually is and how to complete one.

To counteract this, I have started running an extra tutorial session for my students. In this session, I provide the students with copies my own undergraduate literature review that I completed as part of my undergraduate geology degree at the University of Leicester. The review focusses onto emplacement mechanisms for flood lavas both on Earth and across the Solar System, and was completed during the third year of my degree. In the review, I introduce four models that explain how flood lavas are erupted and transported, critique each model and reach a conclusion as to which model, if any, is most accurate. The majority of the students in the group are physical or human geographers and not avid hard-rock igneous petrologists like I was back in the day, so initially the students are quite intimidated by the subject!

As a group, we then read and discuss the literature review to identify the essential components. These include, but are not limited to, a brief but thorough introduction to the subject, headings and sub-headings, relevant images and maps, appropriate use of references and citations, thorough explanations of the subject material, critical evaluations and conclusions.

Immediate comments from the students included bewilderment at how “professionally written” the work was which led to a useful discussion about academic writing, editing and the appropriate use of jargon. The students also felt that despite their initial intimidation of the subject area, that the review gave them a thorough introduction and explanation of the subject and its associated literature – one of the key aims of a literature review.

At the end of the discussion I asked the students to grade the literature review. As a group the students agreed that the work was a very high quality and merited a 1st class mark (˃70%*). In reality the work had been awarded a 2:1 mark (c. 64%*); however as the work was submitted for a 3rd year module the mark can be translated to a 1st class mark at the 2nd year level. The students were able to see therefore what sort of level they should be aiming at with their own work.

When the students submitted their own literature reviews, I was pleased to see that most of the elements that we discussed had been included into their work. Subjects were clearly introduced and explained, relevant images were used to highlight arguments, ideas were critically discussed and logical conclusions were reached.

Feedback from the students noted that the experience of seeing my own work was incredibly useful as it allowed them to see clear examples of similar work. The students now understand what expectations I have for them in the 2nd year of their undergraduate degree based on my own experiences (do as I say, and as I do!). The tutorial also allowed the students to better understand the process of researching and academic writing.

Getting to see and read through a staff member’s work was very informative. It helped me to understand the level at which to pitch my own work and how the use of appropriate figures, even within essays, could improve the overall quality of the piece. I also found that it broke a perceived wall between the complicated published articles and undergraduate work as it showed how the skills I’m learning now can help with more advance writing in the future.”  (Ben, 3rd year student)

Getting an example of a literature review from my tutor was not only useful as a tool, but felt more personal. Allowing me to ask questions I wouldn’t have, if we didn’t have her work as an example.’  (Tom, 2nd year student)

It was a great help to see a good example of a literature review because I had no idea how to even start! I liked the fact that I could refer back to the example for guidance during the process of writing my own literature review, and I believe that I would have had much worse marks without the possibility of seeing an example beforehand.” (Ffion, 2nd year student)

I ran this tutorial last year for the first time and was pleased with the results. This academic year, the original students who are now in their 3rd year have asked to continue the practice as they write their independent research dissertations. During individual and group tutorials I have shown the students my undergraduate research project on the geochemistry of the Siberian Traps lavas and my PhD thesis on tephrochronology in Iceland. Again, feedback from the students has been positive as they appreciate seeing and comparing with their supervisor’s undergraduate work.

The only negative element of this experience was needing to ensure that students did not re-use the same topics for their own projects as this would be considered as plagiarism. However as previously noted, the academic background of the students somewhat precluded this.

Finally, a piece of advice: if you want to share your work with your students, make sure you develop a thick skin! Once the students get going they are surprisingly harsh during the marking and critiquing element of the tutorial!

By Rhian Meara, Physical Geography and Geology Lecturer at Swansea University

* In UK marking schemes, anything given 70% is considered to be of excellent quality.

GeoEd, is a series dedicated to education in the geosciences. If you’d like to share your teaching and educational experiences, anything from formal classroom teaching, through to outreach project ideas, please do get in touch. We always welcome guest contributions to the blog. To pitch an idea for a post, please contact Laura Roberts Artal (the EGU Communication Officer and GeoLog editor) at networking@egu.eu or take a look at our submission page.

GeoEd: Using art in your science teaching and outreach. The why and the how.

GeoEd: Using art in your science teaching and outreach. The why and the how.

This month’s GeoEd post is brought to you by Dr. Mirjam S. Glessmer. Mirjam is a physical oceanographer turned instructional designer. She blogs about her “Adventures in Teaching and Oceanography” and tweets as @meermini. Get in touch if you are interested in talking about teaching and learning in the geosciences!

Sometimes we look for new ways to engage our students or the general public in discussions about our science. Today I would like to suggest we use art! Someone recently told me about her work on “STEAM”, which is STEM+Arts and apparently big on the rise. While I had never heard about it before, and initially found the idea a bit weird and artificial, there are certainly many occasions where thinking about topics in a more comprehensive way than just through disciplinary lenses could be of great benefit, both to get a fuller view of what is going on, as well as to maybe reach people in a different way, and therefore reach people that might not necessarily be interested in either of the parts by itself.

There are many different kinds of art that we can use in STEM teaching and outreach, ranging from art that uses science as its central theme to art that just happens to be displaying something we have a scientific interest in. And while in this blog post “art” is taken to mean visual art, you can think about this much more widely and include music, theatre, anything you can think of! Dream big!

Art that incorporates scientific data

One example of art that uses science as a central theme and that is very well suited for our purposes is the amazing art of Jill Pelto, who communicates scientific research through art. What that means is that she takes graphs of recent dramatic changes in the climate system, like sea level rise or melting glaciers, and uses them in her art as part of the image. For example, a graph of the global average temperature is integrated on the border between a burning forest and the flames leaping into the smoky sky. You’ll only notice it if you look carefully. Similarly, the boundary between the school of clown fish and the forest of anemones moving in the waves, showing the declining ocean pH which threatens this ecosystem (see figure below). Brian Kahn, Senior Science writer for Climate Central, describes Jill Pelto’s paintings as “Trojan horse for science to reach a public that doesn’t necessarily think about data points and models”.

And that is a great approach to using this art. But how else could we use art like this in teaching and outreach?

I could imagine using these kind of images in courses where students are to investigate a scientific topic in a project. Each group of students could be handed a different image, and they could be asked to figure out as much as possible about the topic and present it back to their peers. I would imagine that giving students a data set in such a visually appealing form would provoke an emotional connection and response much more easily than if they were presented with “just” the data. In the final exhibition, the art would work as great eye catchers to lure visitors into a topic.

I could also imagine using Jill Pelto’s art in a science outreach workshop. There, I would ask participating PhD students or scientists to take the one time series (or any other visual representation they have of their data that shows the most important part of their story) and, inspired by the art they saw, integrate their data into an eye-catching display that tells their story for them, which they present to the public at the end of the course.

Wow, this really makes me want to do this for my own research!

Art that visualizes scientific results

The best-known example of art that tells scientific stories is Greg Johnson’s “Climate change science 2013: Haiku“. A poster of all 20 illustrations is up in my office (Thanks, Joke and Torge!) and I can tell you – it is a great conversation starter! The haikus – a traditional form of Japanese poetry – and illustrations provide just enough information to spark curiosity, so I often find myself discussing climate change with my (non-climate scientist) colleagues. Clearly, the haikus would also work as excellent conversation starters in outreach!

Picture from Climate Change Science 2013 Haiku by Dr. Greg Johnson. Credit Sightline Institute, used with permission.

Picture from Climate Change Science 2013 Haiku by Dr. Greg Johnson. Credit Sightline Institute, used with permission.

In teaching, I would use Greg Johnson’s illustrated haikus to break the IPCC report’s summary for policymakers down into its chapters, and hand out one illustration per group. Depending on what kind of students I was teaching, I would either ask them to read the corresponding summaries, or browse the chapter, or read one of the original articles cited in that chapter. I might even ask them to find articles that might shed a different light on the (obviously oversimplified) message of the haikus. What kind of evidence would they want to see to shoot down those messages or in support of it? Those kind of thoughts are a very good practice for their own research where they always need to consider whether the conclusions they draw are the only possible ones. Especially since the illustrations immediately create an emotional involvement with the message of the haiku; this is such an important exercise!

Here, again, the art helps to make very complex science easily approachable, and would again be awesome as an eye catcher in an exhibition where student groups present their work to each other. (If you are worried about all the posters you are supposed to be printing, check out this post for a cheap and easy solution).

The haikus could also be used as inspiration when you ask your students to read articles and summarise them in a haiku plus drawing. This would be great practice to get to the point, and also it would be great practice for outreach. How cool would it be if your students had a piece of art and a short poem summarizing their theses?

For more inspiring illustrations of scientific articles, check out Greg Johnson’s blog. Maybe you’ll find an illustration of the article you were planning to have your students read in their next class?

Art that incidentally shows science we are interested in

Alternatively, take a  look at art that doesn’t explicitly focuses on science as its topic, but which can still be used to discuss science.

One example is given in the TED talk “the unexpected math behind Van Gogh’s `Starry Night´” by Natalya St. Clair, where the painting is deconstructed and put in the context of the development of mathematical theories for turbulence. I have linked the video below and it is totally worth watching!

The video could serve as a great first exposure to turbulence in a physics class and would make for a very interesting assignment in a flipped setting. It could also be watched in art class to help underline that art is a “serious” subject and not just a bit of splashing with paint (or whatever prejudices your audience might have).

Alternatively, you could ask your students to attempt a similar interpretation of a different picture. For example, when talking about different kinds of waves in your oceanography class, ask your students to browse a gallery of famous seaside paintings, online or “for real”, pick one painting and interpret the state of the sea, the shape of the clouds, the color of the light, to learn as much as possible about the weather conditions depicted in the painting. Always interesting, too: Check for consistency of wind direction from all the flags and sails and flying hair!

Alternatively, you could use a collection of pictures to talk about how knowledge in your field developed (for an example of how this could work for soil science, see Laura Roberts-Artal’s blog post).

See – so many ways to include art in your science teaching and outreach to capture new audiences’ interest or just look at your topic from a different angle!

How would you use art in your teaching and outreach? Let us know in the comments below!

By Mirjam S. Glessmer, Coordinator of Teaching Innovation at Hamburg University of Technology