GeoLog

career pathways

Academia is not the only route: exploring alternative career options for Earth scientists

Academia is not the only route: exploring alternative career options for Earth scientists

With more PhD and postdoc positions than there are tenured posts, landing a permanent job in academia is increasingly challenging. For some, years of funding and position uncertainty, coupled with having to relocate regularly is an unwelcome prospect. A changing job market also means that aspiring to the traditional, linear career path might be an unrealistic expectation. Skills acquired by those striving for an academic career (analytical skills, time and project management, persistence – writing a thesis requires it by the bucketload!) are highly valued in other job sectors too.

During a short course at the 2017 General Assembly, a panel of current and former geoscientists discussed their experiences in jobs both inside and outside academia.  They offered tips for how to pursue their careers paths and what skills served them best to get there.

In this blog post we profile each of their jobs and offer some of the highlights from the advice given during the session at the conference.


During the panel discussion Victoria stressed the importance of building a strong professional network, both inside and out of academia.

Victoria O’Connor (Technical Director at Petrotechnical Data Systems)

Victoria gained an undergraduate master degree in geology from the University of Liverpool in 2007. Since then, her career has focused around the oil industry, but has seen twists and turns, which have relied heavily on her building a varied skill set.

For almost six years after graduation, Victoria worked at Rock Deformation Research Ltd (RDR),  a spin out company from the University of Leeds, which was eventually acquired by Schlumberger. She held various roles throughout her time there, eventually becoming Vice President. The role relied heavily on her technical expertise as a structural geologist, as well as people management and organisational skills. In 2013, she moved to The Netherlands to work the Petrel technology team at Shell, where she managed various geoscience software development projects.

Her experience eventually enabled her to set up her own geoscience consulting company which was acquired by the PDS Group, through which she now manages the Geoscience products and services division, leading a 40 strong team of geoscientists and scientific software developers, developing cutting edge technologies for the oil and gas industry in collaboration with various academic institutions. In addition she also holds a visiting researcher position at the University of Leeds where she provides teaching and consultancy support. In addition, she also edits the European region AAPG newsletter.

During the panel discussion, Victoria stressed the importance of building relationships and developing a network of contacts. The benefits of building a strong professional network, both inside and out of academia are far reaching: job opportunities, joint collaborations, career development prospects. In her current role, she is developing technology with academic partners she first met over ten years ago at the University of Leeds.


getting on the career To get on the career ladder make sure you have a well written cover letter and CV, says Philip.

Philip Ball (Strategic Planning and Optimization Team & Geological Specialist [Rifted Margins] at Saudi Aramco)

Philip’s career certainly falls in the windy road category, rather than the linear path. It has involved a number of switches between industry and academic positions which have taken him all over the globe. His positions have always had an oil industry focus. He has lived through a number of market slumps, resulting in redundancies and an uncertain career path at times.

During the panel discussion Philip, highlighted adaptability and flexibility (skills certainly gained during research years) as a key to his success. Landing his first position was partly down to his willingness to be flexible.  In addition to being proactive, publishing, attending conferences and meetings, maintaining a network, never giving up is also critical. For example, he applied three times to Statoil between 2013 and 2015 before he managed to get an interview.

Before progressing onto a PhD, Philip enjoyed a short stint at the British Geological Survey and was a geologist for Arco British Ltd. Since gaining his PhD from Royal Holloway, University of London in 2005, Philip has held a number of positions at oil companies, including StatOil, ConocoPhillips, ONGC Videsh and Saudi Aramco.

His top tips, for getting on the career ladder is to make sure you have a well written cover letter and CV. This is critical whether applying for a student travel grant, research position or a position outside of the academic realm. Also do your research and do not expect chances to come to you. Use and visit the job boards online regularly to find positions in geoscience or other fields.


A career in the publications industry is a popular choice among researchers, like Xenia.

Xenia van Edig (Business Development at Copernicus.org)

Researchers are necessarily familiar with the world of academic publication (for more tips on how journal editors work take a look at this post we published recently), so it is hardly surprising this ends up being the chosen career of many former scientists.

Xenia Van Edig is one such example. Following an undergraduate in geography and PhD  in agricultural sciences at Georg-August-Universität-Göttingen, Xenia took a sidestep into the world of scientific coordination and management before starting her role at Copernicus (publishers of open access journals – including all the EGU publications – and conference organisers).

Project management was a skill set Xenia developed throughout her time as a junior researcher. It has been a pillar stone of her career outside of academia too.


Robert is an example of how a a hobby can become a new career direction.

Robert McSweeney (Science Editor at Carbon Brief)

Robert holds an MEng in mechanical engineering and an MSc in climate change. He worked for eight years as an environmental scientist for Atkins, a global design, engineering and project management firm.

For the past three years he’s been working as a science writer for Carbon Brief  – a website covering the latest developments in climate science, climate policy and energy policy – where he is now science editor. The role relies heavily on Robert’s communications skills, which scientists hone throughout their research career in the form of presentations at conference and to peers.

Robert highlighted how a hobby – in this case, writing – can become a new career direction. He also emphasised that scientists have a lot of opportunities to get involved with communicating their research, and commenting on others’, through blogs, Twitter, and developing extra materials to publish with new papers.


You don’t necessarily have to stick within your original field of expertise

Steven Gibbons (Senior Research Geophysicist at NORSAR)

Perhaps the best hybrid career for a researcher is to be able to continue to investigate, but not necessarily in an academic setting. It’s a nice compromise for those seeking a little more stability than life at traditional research institution might offer. But the notion shouldn’t be viewed with rose tinted glasses either: being an industry/foundation based scientists might mean less independence when it comes to selecting research topics and, often, securing funding is still an important part of the equation.

Nevertheless, it is can be a rewarding career which gives insights into a more commercial mindset and which draws on skills gain throughout academic research years, as Steven Gibbons described during the short course in April.

Crucially, his career trajectory highlights that you don’t necessarily have to stick within your original field of expertise. Steven has a PhD in core geodynamics and the Earth’s magnetic field, but now works as a geophysicist within the programme for Array Seismology and Test-Ban-Treaty Verification at NORSAR.

Steven has an undergraduate and PhD from the University of Leeds and has been working for NORSAR since 2002.


The EGU’s 2018 General Assembly, takes place in Vienna from 8 to 13 April, 2018. For more news about the upcoming General Assembly, you can also follow the offical hashtag, #EGU18, on our social media channels.

Enmeshed in the gears of publishing – lessons from working as a young editor

Enmeshed in the gears of publishing – lessons from working as a young editor

Editors of scientific journals play an important role in the process research publication. They act as the midpoint between authors and reviewers, and set the direction of a given journal. However, for an early career scientist like me (I only defended my PhD in early December 2016) the intricacies of editorial work remained somewhat mysterious. Many academic journals tend to appoint established, more senior scientists to these roles, and while most scientists interact with editors regularly their role is not commonly taught to more junior researchers. I was fortunate to get the chance to work, short term, as an associate editor at Nature Geoscience in the first 4 months of this year (2017). During that time, I learned a number of lessons about scientific publishing that I felt could be valuable to the community at large.

What does an editor actually do?

The role of the editor is often hidden to readers; in both paywalled and open-access journals the notes and thoughts editors make on submitted manuscripts are generally kept private. One of the first things to appreciate is that editors judge whether a manuscript meets a set of editorial thresholds that would make it appropriate for the journal in question, rather than whether the study is correctly designed or the results are robust. I’d argue most editors are looking for a balance of an advance beyond existing literature and the level of interest a manuscript offers for their audience.

At each step of the publication process, from initial submission, through judging referee comments, to making a final decision, the editor is making a judgement whether the manuscript still meets those editorial thresholds.

The vast majority of the papers I got the chance to read were pretty fascinating, but since the journal I was working for is targeted at the whole Earth science community some of these were a bit too esoteric, and as such didn’t fit the thresholds we set to appeal to the journal audience.

I actually found judging papers on the basis of editorial thresholds refreshing – in our capacity as peer reviewers, most scientists are naturally sceptical of methodology and conclusions in other studies, but as an editor in most cases I was able to take the authors conclusions at face-value, and leave the critical assessment to referees.

That’s where the important difference lies; even though editors are generally scientists by training, since they are naturally not experts in every field that they receive papers from, it’s paramount to find reviewers who have the appropriate expertise and to ask them the right set of questions. In journals with academic editors, the editors may have more leeway to make critical comments, but impartiality is key.

Much of this may be already clear to many readers, but perhaps less so to more junior scientists. Many of the editorial decisions are somewhat subjective, like gauging the level of interest to a journal audience.

In the context of open access research journals, I think it’s worth asking whether the editorial decisions should also be made openly readable by authors and referees – this might aid potential authors in deciding how to pitch their articles to a given journal. This feeds into my next point – what are journals looking for?

By which metrics do journals judge studies?
The second big thing I picked up is that the amount of work does not always equate to a paper being appropriate for a given journal. Invariably, authors have clearly worked hard, and it’s often really tricky to explain to authors that their study is not a good fit for the journal you’re working for.

Speaking somewhat cynically, journals run for profit are interested in articles that can sell more copies or subscriptions. Since the audiences are primarily scientists, “scientific significance” will be a dominant consideration, but Nature and subsidiary journals also directly compare the mainstream media coverage of some of their articles with that of Science – that competition is important to their business.

Many other authors have discussed the relative merits of “prestige” journals (including Nobel prize winners – https://www.theguardian.com/science/2013/dec/09/nobel-winner-boycott-science-journals), and all I’ll add here is what strikes me most is that ‘number of grad student hours worked’ is often not related to those articles that would be of a broader interest to the more mainstream media. The majority of articles don’t attract media attention of course, but I’d also argue that “scientific significance” is not strongly linked to the amount of time that goes into each study.

In the long run, high quality science tends to ensure a strong readership of any journal, but in my experience as an editor the quality of science in submitted manuscripts tends to be universally strong – the scientific method is followed, conclusions are robust, but in some cases they’re just pitched at the wrong audience. I’d argue this is why some studies have found in meta-analysis that in the majority of cases, articles that are initially rejected are later accepted in journals of similar ‘prestige’ (Weller et al. 2001, Moore et al. 2017).

As such, it’s imperative that authors tailor their manuscripts to the appropriate audience. Editors from every journal are picking from the same pool of peer reviewers, and so the quality of reviews should also be consistent, which ultimately determines the robustness of a study; so to meet editorial thresholds, prospective authors should think about who is reading the journal.
It’s certainly a fine line to walk – studies that are confirmatory of prior work tend to attract fewer readers, and as such editors may be less inclined to take an interest, but these are nonetheless important for the scientific canon.

In my short time as an editor I certainly didn’t see a way around these problems, but it was eye-opening to see the gears of the publication system – the machine from within, as it were.

Who gets to review?
One of the most time-consuming jobs of an editor is finding referees for manuscripts. It generally takes as long, if not far longer, than reading the manuscript in detail!

The ideal set of referees should first have the required set of expertise to properly assess the paper in question, and then beyond that be representative of the field at large. Moreover, they need to have no conflict of interest with the authors of the paper. There are an awful lot of scientists working in the world at the moment, but in some sub-fields it can be pretty hard to find individuals who fit all these categories.

For example, some studies in smaller research fields with a large number of senior co-authors often unintentionally rule out vast swathes of their colleagues as referees, simply because they have collaborated extensively.

Ironically, working with everyone in your field leaves no-one left to review your work! I have no doubt that the vast majority of scientists would be able to referee a colleagues work impartially, but striving for truly impartial review should be an aim of an editor.

As mentioned above, finding referees who represent the field is also important. More senior scientists have a greater range of experience, but tend to have less time available to review, while junior researchers can often provide more in-depth reviews of specific aspects. Referees from a range of geographic locations help provide diversity of opinion, as well as a fair balance in terms of gender.

It was certainly informative to compare the diversity of authors with the diversity of the referees they recommended, who in general tend to be more male dominated and more US-centric than the authors themselves.

A positive way of looking at this might be that this represents a diversifying Earth science community; recommended referees tend to be more established scientists, so greater author diversity might represent a changing demographic. On the other hand, it’s certainly worth bearing in mind that since reviewing is increasingly becoming a metric by which scientists themselves are judged, recommending referees who are more diverse is a way of encouraging a more varied and open community.

What’s the job like?
Editorial work is definitely rewarding – I certainly felt part of the scientific process, and providing a service to authors and the readership community is the main remit of the job.

I got to read a lot of interesting science from a range of different places, and worked with some highly motivated people. It’s a steep learning curve, and tends to be consistently busy; papers are always coming in, so there’s always a need to keep working.

Perhaps I’m biased, but I’d also suggest that scientists could work as editors at almost any stage in their careers, and it offers a neat place between the world of academia and science communication, which I found fascinating.

By Robert Emberson, freelance science writer

References

Moore, S., Neylon, C., Eve, M. P., O’Donnell, D. P., and Pattinson, D. 2017. “Excellence R Us”: university research and the fetishisation of excellence. Palgrave Communications, 3, 16105

Weller A.C. 2001 Editorial Peer Review: Its Strengths and Weaknesses. Information Today: Medford NJ

GeoEd: Career pathways and expectations in the geosciences – straight lines, wiggles and all out chaos.

GeoEd: Career pathways and expectations in the geosciences – straight lines, wiggles and all out chaos.

 ‘What do you want to be when you grow up?’ From a tender age, we are regularly asked that question, with answers ranging from the downright hilarious through to those kids who’ve got it all figured out. As we grow older the question of what career we want to pursue carries more weight and the outcome of our choices is scrutinised closely.  In today’s GeoEd column, Rhian Meara (a geography and geology lecturer at Swansea University), explores the notion that as young adults adapt to a changing working environment, it is ok to be unsure, to change your mind, and that pursuing the one-time holy grail, linear career path might no longer be a realistic expectation.

My role as a lecturer in the Geography Department at Swansea University includes participating in the university admissions process which includes organising and attending open and visit days, reading application forms and meeting with potential applicants and their parents. Time and time again, I’m asked about employability, work experience opportunities and career pathways – what sort of work will I get after graduation? What are the work experience opportunities? Should I go into post-graduate studies? Will the degree give me transferable skills? What if I choose not to work in the same field as my degree? Current and prospective students are under immense pressure to know what they want to do with their lives from an early age and often feel like failures if they don’t have a “plan”.  And as tuition fees continue to rise, the idea of having a post-graduation “plan” to justify the expense of higher education is becoming more and more important.

The inspiration for this post came after a recent school visit, where most of the students were 16 years old and had no idea what they wanted to study or even if they wanted to go to university. My colleague and I discussed these issues with the students and answered their questions. We explained our backgrounds, what we had studied and how we had gotten to where we are now. My colleague and I had been to the same high school and were now both lecturers at the same university, but our paths in between have been completely different.

Many of us grew up with the “straight line plan”. That is:

Finish school → Go to university (complete PG qualification) → Get a Career → Retire.

Where a university qualification should (in theory) guarantee you a job and a career in your chosen field until retirement. This plan or route is characteristic of our parents’ generation. My contemporaries and I came into play towards the end of the “straight line plan” era, we went to university with grand expectations of long term employment, careers and success in our chosen fields. However, the onset of the international banking crisis in the late 2000s, meant that despite our hard work, many of us found ourselves last in and first out. No job, no career, no funding. And so we began to think outside the box. We used our skills, knowledge, talents and contacts to develop our own jobs, our own careers and our own pathways. Some have carved out career pathways that have stayed relatively similar to the original straight line plan, while others have wiggled around a bit, gaining new skills and experiences from a wide range of opportunities. Being open to new ideas has allowed us to develop our own pathways and to succeed. Below are four examples of how career pathways have developed for my contemporaries and I.

Jo: the industrial straight linerhi_1

Jo is a classic straight liner. Jo graduated with a BSc in Applied and Environmental Geology and gained employment in the Hydrocarbon industry, where she has worked for the past ten years in geosteering. However, due to the current down turn in oil production, Jo has been made redundant. While Jo is investigating what to do next, she has been undertaking a part-time MSc and is open to the idea of moving sideways into a new field which would utilize the transferable skills she gained during her geosteering work.

Rhian: the academic wiggler

rhi_2

This is me! I am an academic wiggler! I initially followed a straight line career; I graduated with an MGeol in Geology and completed a PhD focussing on physical volcanology and geochemistry. I decided that academia wasn’t for me and wiggled sideways into science communication working for an international science festival both in Scotland and in the United Arab Emirates. While I loved the communication work, I felt I had to give academia one more chance and I went back to complete a one year post doc in tephrochronology. Although the post doc confirmed that a career in scientific research wasn’t for me, I discovered the teaching-focussed academic pathway where I could use my communication skills. I’ve now been teaching for four years. The figure above has a two way arrow between teaching and science communicating as I’m still involved with communication and do outreach, accessibility work and TV / radio work to promote my subject whenever possible. I have no major plans to leave my role in the near future, but academia can be a very fickle place. I am therefore continuing to develop my skills and interests to ensure that I am able to wiggle again should the need arise.

Laura: The wiggling communicator

rhi_3

Laura graduated with an MGeol in Geology and worked as an Environmental Consultant before returning to academia to complete a PhD in Geomagnetism. While completing her PhD, Laura began blogging about geosciences and her research and developed a passion for science communication and social media. Upon completion of her PhD, Laura gained employment at the European Geosciences Union as the Communications Officer, and is now responsible for managing and developing content for the EGU blogs, social media accounts, online forums and Early Career Researcher activities. Laura is a perfect example of how to use your interests, skills and passions to create new opportunities.

Kate: the chaotic accumulator

Kate is a chaotic accumulator, and I mean that in the best possible way. Kate is someone who tries everything and has developed a portfolio of transferable skills and interests from each experience.  Although slightly chaotic to the untrained eye, there are underlying themes in the figure above: Geography, Textiles and Education. Each job or qualification has built on one or more of those themes and in her current job as a university lecturer in Human Geography, Kate uses all three themes in her modules. There is an additional theme that does not show up on the figure: Language. Kate is a fluent Welsh speaker and in each position or qualification, the Welsh language has been central from museums to coaching to teaching to lecturing.rhi_4

And so in my future discussions with applicants and their parents, I will introduce the idea of straight lines, wiggles and all out chaos (although perhaps not in those exact words). I will explain that an undergraduate degree will train and prepare them, but that we should all be open to new opportunities and new experiences.

And as life becomes more complicated once again – the down turn in the oil industry, the impact of the UK leaving the EU, an overly qualified labour market – it’s becoming more important than ever for us all to adapt, to think outside the box, to wiggle.

By Rhian Meara, Geology & Geography Lecturer at Swansea University.