Ocean Sciences

Imaggeo on Mondays: Polar backbone (Arctic Ocean)

Imaggeo on Mondays: Polar backbone (Arctic Ocean)

This image was taken during the Arctic Ocean 2016(AO16) expedition that ventured to the central regions of the Arctic Ocean, including the North Pole. It shows a pressure ridge, or ice ridge, as viewed from onboard the deck of the icebreaker Oden. It was quite striking that the ice ridge resembled an image of a spine – sea ice being a defining characteristic of the broader Arctic environment and backbone to global climate interactions.

An ice ridge is a wall of broken ice that forms when floating ice is deformed by a build up of pressure between adjacent ice floes. Sea ice can drift quite quickly, and is driven by wind and ocean currents. Ridges are typically thicker than the surrounding level sea ice, being built up by ice blocks of different sizes. The submerged portion of the ridge is referred to as the “keel”, and the part above the water surface is called the “sail”. Ridges can be categorized as “first year” or “multi-year” features, with weathering affecting the morphology.

In the Arctic, such ridges have been measured to in excess of 20 m in thickness including keel and sail. As someone who studies plate tectonics, these collisional boundaries between plates of ice reminded me of a downscaled mountain-building setting.

The AO16 expedition ran from August to September 2016 and involved the Swedish icebreaker Oden and the Canadian icebreaker the Louis S. St-Laurent. A wealth of geological, oceanographic, meteorological data was collected. This period appeared to have coincided with the second lowest extent of sea ice coverage on record (tied with 2007), with around 4.14 million square kilometers.

The geological evolution of the Arctic Ocean in the regions closest to the margins of northern Greenland and the Canadian Arctic Islands are some of the most poorly understood. This is largely a function of the oceanic gyre system, which causes the thickest sea ice to build up in these areas making physical access difficult. From a maritime engineering perspective, the ice ridges pose a challenge and risk to icebreaking operations and navigation. Ice ridges may determine the design load for marine and coastal structures such as platforms, ships, pipelines and bridges, and are important for both ice volume estimations and for the strength of pack ice.

By Grace Shephard, geophysicist from the Centre for Earth Evolution and Dynamics (CEED) at the University of Oslo, Norway.

April GeoRoundUp: the best of the Earth sciences from the 2017 General Assembly

April GeoRoundUp: the best of the Earth sciences from the 2017 General Assembly

This month’s GeoRoundUp is a slight deviation from the norm. Instead of drawing inspiration from popular stories on our social media channels and unique or quirky research featured in the news, we’ve rounded up some of the stories which came out of researcher presented at our General Assembly (which took place last week in Vienna). The traditional format for the column will return in May!

Major story

Artists often draw inspiration from the world around them when composing the scene for a major work of art. Retrospectively trying to understanding the meaning behind the imagery can be tricky.

This is poignantly true for Edvard Munch’s iconic ‘The Scream’. The psychedelic clouds depicted in the 18th Century painting have been attributed to Munch’s inner turmoil and a trouble mental state. Others argue that ash particles strewn in the atmosphere following the 1883 Krakatoa volcanic eruption are the reason for the swirly nature of the clouds represented in the painting.

At last week’s General Assembly, a team of Norwegian researchers presented findings which provide a new explanation for the origin of Munch’s colourful sky (original news item from AFP [Agence France-Presse): mother-of-pearl clouds. These clouds “appear irregularly in the winter stratosphere at high northern latitudes, about 20-30 km above the surface of the Earth,” explains Svein Fikke, lead author of the study, in the conference abstract.

“So far observed mostly in the Scandinavian countries, these clouds are formed of microscopic and uniform particles of ice, orientated into thin clouds. When the sun is below the horizon (before sunrise or after sunset), these clouds are illuminated in a surprisingly vibrant way blazing across the sky in swathes of red, green, blue and silver. They have a distinctive wavy structure as the clouds are formed in the lee-waves behind mountains”, writes Hazel Gibson (EGU General Assembly Press Assistant) in a post published on GeoLog following a press conference at the meeting in Vienna (which you can watch here).

With coverage in just over 200 news items, this story was certainly one of the most popular of the meeting. Read more about the study in the full research paper, out now.

What you might have missed

Also (typically) formed in the downside of mountains and in the conference spotlight were föhn winds. The warm and dry winds have been found to be a contributing factor that weakens ice shelves before a collapse.

Ice shelf collapse has been in the news recently on account of fears of a large crack in the Larsen C Ice Shelf generating a huge iceberg.  Though the exact causes for crack generation on ice shelves remain unclear, new research presented by British Antarctic Survey scientists at the conference in Vienna highlighted that föhn winds accelerate melting at the ice shelf surface.  They also supply water which, as it drains into the cracks, deepens and widens them.

Meanwhile, deep under ocean waters, great gouge marks left behind on the seafloor as ancient icebergs dragged along seabed sediments have been collected into an Atlas of Submarine Glacial Landforms, published by the Geological Society of London. The collection of maps sheds light on the past behaviour of ice and can give clues as to how scientists might expect ice sheets to respond to a changing climate.

Drumlins (elongate hills aligned with the ice flow direction) from the Gulf of Bothnia in the Baltic Sea. Credit: Atlas of Submarine Glacial Landforms/BAS

Closer to the Earth’s surface, groundwater also attracted its fair share of attention throughout the meeting. It’s hardly surprising considering groundwater is one of the greatest resources on the planet, globally supplying approximately 40% of the water used for irrigation of crops and providing drinking water for billions around the world. ‘Fossil’ groundwater, which accumulated 12,000 years ago was once thought to be buried too deep below the Earth’s surface to be under threat from modern contaminants, but a new study presented during the General Assembly has discovered otherwise.

Up to 85% of the water stored in the upper 1 km of the Earth’s outermost rocky layer contains fossil groundwater. After sampling some 10,000 wells, researchers found that up to half contained tritium, a signature of much younger waters. Their presence means that present-day pollutants carried in the younger waters can infiltrate fossil groundwater. The study recommends this risk is considered when managing the use of fossil waters in the future.

Links we liked

News from elsewhere

The spectacular end to the Cassini mission has featured regularly in this month’s bulletins.

During its 13 years in orbit, Cassini has shed light on Saturn’s complex ring system, discovered new moons and taken measurements of the planet’s magnetosphere. On September 15th,  the  mission will end when the probe burns up in Saturn’s atmosphere.

On 22 April, the final close flyby of Saturn’s largest moon, Titan, propelled the Cassini spacecraft across the planet’s main rings and into its Grand Finale series of orbits. This marks the start of the final and most audacious phase of the mission as the spacecraft dives between the innermost rings of Saturn and the outer atmosphere of the planet to explore a region never before visited; the first of 22 ring plane crossings took place on 26 April.You can watch a new movie which shows the view as the spacecraft swooped over Saturn during the dive here.

For an overview of highlights from the mission and updates from the ring-grazing orbits that began in November 2016 watch this webstream from a press conference with European Space Agency scientists at the General Assembly last week.

To stay abreast of all the EGU’s events and activities, from highlighting papers published in our open access journals to providing news relating to EGU’s scientific divisions and meetings, including the General Assembly, subscribe to receive our monthly newsletter.

Knowing the ocean’s twists and turns

Knowing the ocean’s twists and turns

Navigating the ocean demands a knowledge of its movements. In the past, sailors have used this knowledge to their advantage, following the winds and the ocean currents to bring them on their way.

Prior to mutiny in 1789, Captain Bligh – on the HMS Bounty – famously spent a month attempting to pass westward through the Drake Passage, around Patagonia’s Cape Horn. Here the westerly winds were strong (as they are today) and drove the waters hard against the ship as it persisted against the flow. But they could not pass, and were forced to reach the Pacific by crossing back south of Africa, through the Indian Ocean, costing the mission many months.

It is the winds which predominantly drive the currents at the ocean’s surface. Depending on where you are on the planet, the winds blow in a variety of prevailing directions, exerting control over the surface of the oceans, over which they roll. Where the Earth’s westerlies prevail (moving eastwards, between the 30 to 60 degree latitude belt, in both hemispheres) we encounter some of the world’s fastest currents, including the Atlantic’s Gulf Stream, and the Kuroshio Current off Japan. These currents bring with them huge amounts of heat from tropical and subtropical areas; which is why Western Europe experiences much milder winters than other regions at similar latitudes (think Newfoundland, for example).

Also under the influence of the westerly winds is the world’s largest ocean current, the Antarctic Circumpolar Current, which circles Antarctica in the southern hemisphere. The Antarctic Circumpolar Current lies under the influence of the infamous Roaring Forties, Furious Fifties, and Screaming Sixties westerly wind bands, and acted as a major stretch along the historical clipper route between Europe, Australia, and New Zealand in the 19th century.

The trade winds (also known as the easterlies, circling the Earth between 0 and 30 degrees latitude, in both hemispheres) are typically weaker than the westerlies, but sufficiently strong to have enabled European expansion into the Americas over the centuries. The trades drive ocean currents such as the Canary Current and North Equatorial Current in the Atlantic Ocean, and the California Current and North Equatorial Current in the Pacific.

Also within these latitudes – particularly near the equator – are the doldrums, which are areas characterised by weak or non-existent winds. These regions became well known in the past as sailors were regularly stranded whilst crossing equatorial regions – immobile for days or weeks, resting in seas of calm – awaiting the winds to pick up and move them onwards.

As well as at the surface, the ocean is moving in its interior, with large scale sinking to depths of over 4000 meters in cold polar regions, and upwelling in the warmer tropics and subtropics. The ocean turns over on itself like a bathtub of water heated unevenly from above. Below the surface the deep waters move slowly (centimeters per second, rather than meters per second at the surface), mostly unaffected by wind. Here huge ocean scale water masses move (largely) because of density differences between regions, determined by variations in heat and salinity (salt content). Cold, salty water is dense, and sinks, while warmer water rises.

This large-scale overturning, which characterizes the movement of the world’s ocean as a whole, is known as the global conveyor belt, or the thermohaline circulation (thermo for heat, and haline for salt). Along the conveyor it takes thousands of years for water masses to complete a cycle around the planet.

But like many other features of our Earth system, it is now thought that the behaviour of the ocean’s circulation is beginning to change. Back at the surface oceanographers now expect that ocean currents will undergo substantial change in response to anthropogenic global warming. Computer simulations of the ocean and atmosphere are used to predict whether certain wind systems will strengthen or weaken in the future, and to look at the effect this might have on the underlying ocean currents.

We know from historical evidence that the strength of the ocean’s currents has varied in the past, so this coming century we can expect some changes along our ocean routes; an obvious and well highlighted example being the opening of commercial routes in the new ice-free Arctic.

Whatever the nature of the future ocean, modern technology including real-time satellite-sourced ocean data, and advanced ocean weather and wave forecasts, will allow us to constantly track changes, so that no matter the winds or current speeds, we should always be able to get where we’re going.

By Conor Purcell is a Science and Nature Writer with a PhD in oceanography.

Conor is based in Dublin, Ireland, and can be found on twitter @ConorPPurcell, with some of his other articles at He is also the founder-editor at

Imaggeo on Mondays: Atmospheric gravity waves

Imaggeo on Mondays: Atmospheric gravity waves

From the tiny vibrations which travel through air, allowing us to hear music, to the mighty waves which traverse oceans and the powerful oscillations which shake the ground back and forth during an earthquake, waves are an intrinsic part of the world around us.

As particles vibrate repeatedly, they create an oscillation, which when accompanied by the transfer of energy, creates a wave.  The way in which waves travel varies hugely. Take for instance a ripple in a pond: vibrations there are perpendicular to the direction in which the wave is travelling – transverse waves. When a slinky moves (or sound waves), on the other hand, vibrations happen in the same direction in which the wave travels – longitudinal waves. Ocean waves are more complex. The motion there combines surface waves, created by the friction between wind and surface water, and the energy passing through the water causes it to move in a circular motion. With a little imagination, it’s not so difficult to visualise these different phenomena.

But not all waves on Earth are so intuitive.

Unlike the waves we’ve discussed up until now, internal gravity waves oscillate within a fluid medium, rather than on its surface. In the Earth’s atmosphere, internal gravity waves transfer energy from the troposphere (the layer closest to the Earth’s surface) to the stratosphere (where the ozone layer is found) to the very cold mesosphere, which starts some 50 km away from the planet’s surface. They are usually created at weather fronts: the boundary where two pockets of air at different temperatures and humidity meet. Air flowing over mountains can also generate them.

Because they propagate across layered fluids (the different layers of the atmosphere, for example), internal gravity waves can be responsible for transferring considerable amounts of energy over large distances, which is one of the main reasons why they are important in atmospheric and ocean dynamics.

But only with improved satellite and remote sensing technologies have scientists been able to observe them clearly. Today’s featured image is a great example of one such wave.  It was acquired by the European Space Agency’s Envisat satellite (which aimed to carry out the largest civilian Earth observation mission to date – launched in 2002), on September 16th 2004.

A short animation showing just how impressive these waves are when travelling across the Mozambique Channel – using data from the Meteosat 5 satellite. (Credit: Jorge Magalhaes and Jose da Silva)

The image covers an area of about 580 by 660 km and was acquired as the satellite flew over the Mozambique Channel. The two-dimensional horizontal structure of a very large-scale atmospheric internal wave can be seen in the center of the image travelling southwest. The crest length of the leading wave, in this case, extends for more than 500 km and its crest-to-crest spatial scale is approximately 10 km on average.

It is interesting to note that several (but not all) of these individual waves are made visible by characteristic cloud bands, which form as the vertical oscillations find the necessary conditions (high moisture in the atmosphere) for condensation to occur.

Imaggeo is the EGU’s online open access geosciences image repository. All geoscientists (and others) can submit their photographs and videos to this repository and, since it is open access, these images can be used for free by scientists for their presentations or publications, by educators and the general public, and some images can even be used freely for commercial purposes. Photographers also retain full rights of use, as Imaggeo images are licensed and distributed by the EGU under a Creative Commons licence. Submit your photos at


Get every new post on this blog delivered to your Inbox.

Join other followers: