GeoLog

Energy, Resources and the Environment

Imaggeo on Mondays: The retreating glaciers of the Svaneti Range, Georgia

Imaggeo on Mondays: The retreating glaciers of the Svaneti Range, Georgia

Today’s Imaggeo on Mondays picture shows the central section of the Svaneti Range, located in the Svaneti Region – a historic province of northwestern Georgia. The range is the second biggest range formed by the modern glaciation on the southern slopes of the Georgian Caucasus Mountains. In today’s post, Levan Tielidze, a researcher at Ivane Javakhishvili Tbilisi State University, writes about the ice capped peaks of these high mountains and highlights the precarious balance of this cryospheric system.

Svaneti range is approximately 100 km long and is distinguished by the height of its relief, as well as by the fact that the area covered by glaciers in the region exceeds that covered elsewhere in the southern slopes of the Georgian Caucasus.These features define the range and lead it to be divided into three sections: eastern, central (shown in this picture) and western. The eastern and western sections are lower in altitude than the central region and modern ice cover cannot be found there, with the exception of Mount Dadiashi which stands at 3535 m asl.

However, glaciers do cap the peaks in the central areas of the range, and can be found between the sections of Lasili and Leshnuri. Here is where you’ll find the highest peak of the mountain range: Laila (Laila-Lehli) -4009 m asl.

The glaciers in this region are retreating and losing volume. Data from the 1960s indicated that glaciers in the range numbered up to 48 and covered an area of approximately 27.76 km2 , equivalent to the size of just over 2500 football pitches. By 2014 the area covered by the glaciers in the region had shrunk by 27.5% and now only covers approximately 20.13 km2.

Some of the largest glaciers of the northern slopes of the range are formed on Laila peak, which itself is covered by a glacier cap. Among these glaciers the largest is Eastern Laila, located in the Khumpreri River basin. The glacier is formed of two ice streams which flow from separate valleys. In 1960 the glacier area was  close to 5.96 km2; its terminus ended at a height of 2300 meters asl. By 2014 the eastern Laila’s area decreased to 3.55 km2 and has retreated to an altitude of 2640 m asl. The total glacier length is now approximately 4.52 kilometers.

The glaciers are an important source of water for agricultural production in Georgia, and runoff in large glacially-fed rivers (Kodori, Enguri, Rioni, Tskhenistskali, Nenskra) supplies several hydroelectric power stations. In addition, glacier outburst floods and related debris flows are a significant hazard in Georgia and in the Caucasus. Future trends in glacier change are thus a topic of considerable interest to the region.

By Levan Tielidze, Institute of Geography, Tbilisi State University, Georgia

If you pre-register for the 2016 General Assembly (Vienna, 17 – 22 April), you can take part in our annual photo competition! From 1 February up until 1 March, every participant pre-registered for the General Assembly can submit up three original photos and one moving image related to the Earth, planetary, and space sciences in competition for free registration to next year’s General Assembly!  These can include fantastic field photos, a stunning shot of your favourite thin section, what you’ve captured out on holiday or under the electron microscope – if it’s geoscientific, it fits the bill. Find out more about how to take part at http://imaggeo.egu.eu/photo-contest/information/.

Imaggeo on Mondays: Man-made landscape

Imaggeo on Mondays: Man-made landscape

The landscape of the Mersey Estuary in Liverpool Bay is ever changing; it offers the opportunity to observe the changing geomorphology of a river estuary which is closely linked to a very urban and man-made landscape. For more on this unique setting, read today’s Imaggeo on Mondays post brought to you by Maria Burguet Marimon.

This picture was taken at Crosby beach, which is located just at the beginning of the Mersey Estuary in the Liverpool Bay. The current Crosby beach dates back in the beginning to the 20th century, in which the stabilization process of the sand was carried out.

It is important to remark that, during the first half of the 20th century, the estuary underwent a significant period of morphological change. Changes to the ebb and flood tide hydrodynamics in Liverpool Bay, caused by the construction of training walls in the outer estuary, resulted in large-scale movement of sediment into the inner estuary, increasing intertidal area and reducing the estuary volume from 745 Mm3 to 680 Mm3 (Thomas, 2000; Thomas et al., 2002). Since this time, a new equilibrium appears to have been reached and the rate of sediment movement into the estuary has slowed (Halcrow, 2010).

In 2007, following a meeting with the local government, Sefton Council,  sculptures made by Sir Antony Gormley were placed along a stretch of Crosby beach in an art exhibition known as Another Place. A total of 100 cast-iron sculptures were placed facing towards the sea. The idea of the exhibition is to show the statues at different stages: rising from the sand near the promenade to standing at the water’s edge and finally submerging into the sea. It is as if the statues are leaving us willingly but with a tinge of sadness or suffering. Each sculpture faces towards Burbo Bank Offshore Wind Farm, looking for a brighter and more ecological future.

By Dr. Maria Burguet Marimon, researcher at the University of Valencia.

Imaggeo is the EGU’s online open access geosciences image repository. All geoscientists (and others) can submit their photographs and videos to this repository and, since it is open access, these images can be used for free by scientists for their presentations or publications, by educators and the general public, and some images can even be used freely for commercial purposes. Photographers also retain full rights of use, as Imaggeo images are licensed and distributed by the EGU under a Creative Commons licence. Submit your photos at http://imaggeo.egu.eu/upload/.

The best of Imaggeo in 2015: in pictures

The best of Imaggeo in 2015: in pictures

Last year we prepared a round-up blog post of our favourite Imaggeo pictures, including header images from across our social media channels and Immageo on Mondays blog posts of 2014. This year, we want YOU to pick the best Imaggeo pictures of 2015, so we compiled an album on our Facebook page, which you can still see here, and asked you to cast your votes and pick your top images of 2015.

From the causes of colourful hydrovolcanism, to the stunning sedimentary layers of the Grand Canyon, through to the icy worlds of Svaalbard and southern Argentina, images from Imaggeo, the EGU’s open access geosciences image repository, have given us some stunning views of the geoscience of Planet Earth and beyond. In this post, we highlight the best images of 2015 as voted by our Facebook followers.

Of course, these are only a few of the very special images we highlighted in 2015, but take a look at our image repository, Imaggeo, for many other spectacular geo-themed pictures, including the winning images of the 2015 Photo Contest. The competition will be running again this year, so if you’ve got a flare for photography or have managed to capture a unique field work moment, consider uploading your images to Imaggeo and entering the 2016 Photo Contest.

Different degrees of oxidation during hydrovolcanism, followed by varying erosion rates on Lanzarote produce brilliant colour contrasts in the partially eroded cinder cone at El Golfo. Algae in the lagoon add their own colour contrast, whilst volcanic bedding and different degrees of welding in the cliff create interesting patterns.

 Grand Canyon . Credit: Credit: Paulina Cwik (distributed via imaggeo.egu.eu)

Grand Canyon . Credit: Credit: Paulina Cwik (distributed via imaggeo.egu.eu)

The Grand Canyon is 446 km long, up to 29 km wide and attains a depth of over a mile 1,800 meters. Nearly two billion years of Earth’s geological history have been exposed as the Colorado River and its tributaries cut their channels through layer after layer of rock while the Colorado Plateau was uplifted. This image was submitted to imaggeo as part of the 2015 photo competition and theme of the EGU 2015 General Assembly, A Voyage Through Scales.

Water reflection in Svalbard. Credit: Fabien Darrouzet (distributed via imaggeo.egu.eu)

Water reflection in Svalbard. Credit: Fabien Darrouzet (distributed via imaggeo.egu.eu)

Svalbard is dominated by glaciers (60% of all the surface), which are important indicators of global warming and can reveal possible answers as to what the climate was like up to several hundred thousand years ago. The glaciers are studied and analysed by scientists in order to better observe and understand the consequences of the global warming on Earth.

Waved rocks of Antelope slot canyon - Page, Arizona by Frederik Tack (distributed via imaggeo.egu.eu).

Waved rocks of Antelope slot canyon – Page, Arizona by Frederik Tack (distributed via imaggeo.egu.eu).

Antelope slot canyon is located on Navajo land east of Page, Arizona. The Navajo name for Upper Antelope Canyon is Tsé bighánílíní, which means “the place where water runs through rocks.”
Antelope Canyon was formed by erosion of Navajo Sandstone, primarily due to flash flooding and secondarily due to other sub-aerial processes. Rainwater runs into the extensive basin above the slot canyon sections, picking up speed and sand as it rushes into the narrow passageways. Over time the passageways eroded away, making the corridors deeper and smoothing hard edges in such a way as to form characteristic ‘flowing’ shapes in the rock.

 Just passing Just passing. Credit: Camille Clerc (distributed via imaggeo.egu.eu)

Just passing. Credit: Camille Clerc (distributed via imaggeo.egu.eu)

An archeological site near Illulissat, Western Greenland On the back ground 10 000 years old frozen water floats aside precambrian gneisses.

Sarez lake, born from an earthquake. Credit: Alexander Osadchiev (distributed via imaggeo.egu.eu)

Sarez lake, born from an earthquake. Credit: Alexander Osadchiev (distributed via imaggeo.egu.eu)

Beautiful Sarez lake was born in 1911 in Pamir Mountains. A landslide dam blocked the river valley after an earthquake and a blue-water lake appeared at more than 3000 m over sea level. However this beauty is dangerous: local seismicity can destroy the unstable dam and the following flood will be catastrophic for thousands Tajik, Afghan, and Uzbek people living near Mugrab, Panj and Amu Darya rivers below the lake.

Badlands national park, South Dakota, USA. Credit: Iain Willis (distributed via imaggeo.egu.eu)

Badlands national park, South Dakota, USA. Credit: Iain Willis (distributed via imaggeo.egu.eu)

Layer upon layer of sand, clay and silt, cemented together over time to form the sedimentary units of the Badlands National Park in South Dakota, USA. The sediments, delivered by rivers and streams that criss-crossed the landscape, accumulated over a period of millions of years, ranging from the late Cretaceous Period (67 to 75 million years ago) throughout to the Oligocene Epoch (26 to 34 million years ago). Interbedded greyish volcanic ash layers, sandstones deposited in ancient river channels, red fossil soils (palaeosols), and black muds deposited in shallow prehistoric seas are testament to an ever changing landscape.

Late Holocene Fever. Credit: Christian Massari (distributed via imaggeo.egu.eu)

Late Holocene Fever. Credit: Christian Massari (distributed via imaggeo.egu.eu)

Mountain glaciers are known for their high sensitivity to climate change. The ablation process depends directly on the energy balance at the surface where the processes of accumulation and ablation manifest the strict connection between glaciers and climate. In a recent interview in the Gaurdian, Bernard Francou, a famous French glaciologist, has explained that the glacier depletion in the Andes region has increased dramatically in the second half of the 20th century, especially after 1976 and in recent decades the glacier recession moved at a rate unprecedented for at least the last three centuries with a loss estimated between 35% and 50% of their area and volume. The picture shows a huge fall of an ice block of the Perito Moreno glacier, one of the most studied glaciers for its apparent insensitivity to the recent global warming.

 Nærøyfjord: The world’s most narrow fjord . Credit: Sarah Connors (distributed via imaggeo.egu.eu)

Nærøyfjord: The world’s most narrow fjord . Credit: Sarah Connors (distributed via imaggeo.egu.eu)

Feast your eyes on this Scandinavia scenic shot by Sarah Connors, the EGU Policy Fellow. While visiting Norway, Sarah, took a trip along the world famous fjords and was able to snap the epic beauty of this glacier shaped landscape. To find out more about how she captured the shot and the forces of nature which formed this region, be sure to delve into this Imaggeo on Mondays post.

The August 2015 header images was this stunning image by Kurt Stuewe, which shows the complex geology of the Helvetic Nappes of Switzerland. You can learn more about the tectonic history of The Alps by reading this blog post on the EGU Blogs.

 (A)Rising Stone. Credit: Marcus Herrmann (distributed via imaggeo.egu.eu)

(A)Rising Stone. Credit: Marcus Herrmann (distributed via imaggeo.egu.eu)

The September 2015 header images completes your picks of the best images of 2015. (A)Rising Stone by Marcus Herrmann,  pictures a chain of rocks that are part of the Schrammsteine—a long, rugged group of rocks in the Elbe Sandstone Mountains located in Saxon Switzerland, Germany.

If you pre-register for the 2016 General Assembly (Vienna, 17 – 22 April), you can take part in our annual photo competition! From 1 February up until 1 March, every participant pre-registered for the General Assembly can submit up three original photos and one moving image related to the Earth, planetary, and space sciences in competition for free registration to next year’s General Assembly!  These can include fantastic field photos, a stunning shot of your favourite thin section, what you’ve captured out on holiday or under the electron microscope – if it’s geoscientific, it fits the bill. Find out more about how to take part at http://imaggeo.egu.eu/photo-contest/information/.

Looking back at the EGU Blogs in 2015: welcoming new additions

Looking back at the EGU Blogs in 2015: welcoming new additions

It’s a little over 12 months since we launched the new look EGU blogs and with the holidays and new year approaching, what better time to take stock of 2015 as featured in the EGU Blogs? The past year has been full of exciting, insightful and informative blog posts. At the same time, we’ve welcomed new additions to the network and division blogs.

The network blogs

A recent highlight of the year has to be the addition of a new blog to the network: please welcome our new blogger Professor David Pyle, author of VolcanicDegassing – a blog about volcanoes and volcanic activity. In 2016 you can look forward to posts about David’s ongoing research in Latin America, the Caribbean, Ethiopia and Europe, as well as historical and contemporary descriptions or other representations of volcanic activity across the globe.

Vesuvius in eruption, April 26, 1872. Original caption ‘from a photograph taken in the neighbourhood of Naples”. (Palmieri and Mallet, 1873). Published in the Decemeber 15th post:  'The first volcanic eruption to be photographed?'

Vesuvius in eruption, April 26, 1872. Original caption ‘from a photograph taken in the neighbourhood of Naples”. (Palmieri and Mallet, 1873). Published in the Decemeber 15th post: ‘The first volcanic eruption to be photographed?

Richly illustrated and referenced posts have featured across the network throughout the year, with topics ranging from the journey aerosol particles go on throughout their life time, through to the role peculiarities of geology and geomorphology play in deciding on big international governance.

The most popular post written in 2015 was brought to you by Jon Tennant and featured the ichthyosaurs, an unusual turtle-fish-dolphin like marine reptile which cruised the seas 250 million years ago. The post focuses on the discovery of an ichthyosaur fossil named David, or rather Cartorhynchus lenticarpu as it is formally known, and how the remarkable specimen sheds light on the origins of these unusual creatures.

Matt Herod’s post on Geosphere in early December 2014 featuring the story behind the legal battle of Italian geochemists who were sued after publishing results stating that they could not find above background levels of depleted uranium in former Italian military firing ranges, is the second most read post across the network in the past year. With a strong resemblance to the L’Aquila verdict against the Italian seismologists, which was resolved in 2014, Matt highlights there are lessons to be learnt from both cases in the post.

Natural hazards and the April 2015 Nepal earthquakes featured heavily across the network too. In the immediate aftermath of the earthquake, the Geology for Global Development blog compiled a comprehensive list of links and resources which readers could consult to find out up to date and reliable information about the events in Nepal. A list which is still a useful resource some 8 months after the tragedy and which is the third most popular post on the network this year. Simon Redfern, of Atom’s Eye View of the Planet, wrote a piece on how and why scientists have identified Kathmandu valley as one of the most dangerous places in the world, in terms of earthquake risk.

With many of the network bloggers being in the thick of PhD research or having recently submitted their thesis, tips and hints for a successful PhD completion also proved a focus of the content across the network. Despite being originally written in April 2013, Jon Tennant’s blog post on why and how masters students should publish their research was the most popular post of the year! The most read post from Geology Jenga advertised a new, and free, online course on how to survive the PhD journey.

The division blogs

Since their launch last December, the division blogs have gone from strength to strength. Keeping you updated with news and information relevant to each division, they have also featured accounts of field and laboratory work, as well as professional development opportunities and open vacancies.

Throughout the year the division blogs have been enhanced through the addition of the Atmospheric Sciences, Energy Resources and Environment blogs and, most recently, the Biogeosciences Division blog too.

Cross-section of the age of the Greenland Ice Sheet from radar data. Credit: NASA's Scientific Visualization Studio and MacGregor et al., 2015.

Cross-section of the age of the Greenland Ice Sheet from radar data. Credit: NASA’s Scientific Visualization Studio and MacGregor et al., 2015.

The most popular post of the year was shared by the Seismology Division and touched upon the controversial topic of whether cloud formations can be used to predict earthquakes, while the Cryosphere Division blog’s image of the week of late October featuring a cross section of the Greenland Ice Sheet was the second most popular post. Round-up posts about the 2015 General Assembly, tips for convening sessions at the conference, as shared by Geodesy Division, and some soul searching by the Geomorphology Division as to why a proposed session wasn’t included in the final conference programme also proved very popular.

Get involved

Are you a budding science writer, or want to try your hand at science communication? All the EGU Blogs, from GeoLog (the official EGU blog), through to the network and division blogs, welcome guest contributions from scientists, students and professionals in the Earth, planetary and space sciences.

It couldn’t be easier to get involved. Decide what you’d like to write about, find the blog that is the best fit for your post and contact the blog editor – you can find all editor details on the individual blog pages. If in doubt, you can submit your idea for a post via the Submit a Post page on GeoLog, or email the EGU Communications Officer, Laura Roberts, who can help with initial enquiries and introduce you to individual blog editors.

Don’t forget to a look at the blog pages for a flavour of the content you can expect from the new, and existing, blogs in 2016. The blogs are also a great place to learn about new opportunities, exciting fields of research and keep up to date with news relating to the upcoming 2016 General Assembly.

Follow

Get every new post on this blog delivered to your Inbox.

Join other followers: