GeoLog

Energy, Resources and the Environment

The ethics of mining

This guest blog post is brought to you by Nick Arndt, Professor at ISTerre and convenor of the the Great Debate at last year’s General Assembly, Metals in our backyard: to mine or not to mine. During the Great Debate the issue of whether the environment impact of mining outweighs the benefits vs. domestic metal production was questioned. With Europe currently importing between 60-100% of the metals that are essential for modern society, this posts explores how realistic it is to advocate for no mining in our own backyards.

Two years ago, in response to massive demonstrations on the streets of Bucharest, the Romania government reversed its decision to allow mining of the Rosia Montana gold deposit. Fierce discussion currently surrounds the Pebble deposit in Alaska, the fifth largest unmined copper deposit. Last summer, protesters derailed mineral exploration in the Rouez region, the first exploration authorized in France for 20 years. In all cases, the activists argued that the environmental risks were so great that mining was unacceptable. The slogan of the French protesters was:

“no mines!!! neither in Rouez, nor anywhere”.

When the Rouez activists were asked where the metals needed for modern society should come from, many answered that improved recycling and substitution would provide the solution. If only this were true! Recycling will indeed provide an increasing proportion of our metals in the future, but for decades to come, new supplies of metals and other mineral products will be required. The vast infrastructure of wind turbines and solar panels needed for a low-carbon society will consume huge amounts of mineral products, not only the well-publicized rare earths and other critical elements, but also enormous quantities of steel, aluminium, concrete and sand. All these materials will be locked up for the 20-30 year lifetime of the structures and will not be available for recycling.

Anti-mining march Auckland New Zealand. Credit: Greg Presland (distributed via Wikimedia Commons)

Anti-mining march Auckland New Zealand. Credit: Greg Presland (distributed via Wikimedia Commons)

To organize their demonstrations, the Rouez and Bucharest activists used cell phones containing numerous rare metals, including cobalt-tantalum that probably came from war-torn central Africa. Some of the titanium might have come from a mine in Norway, and some copper from Poland, but the other metals were imported from outside Europe

The main reason why oil prices have plunged in the past three months is the recent availability of large sources of gas and oil from shale in the USA. While the low prices will have a negative medium-term impact on movements to wean society from fossil fuels, in the short term they may provide a sorely needed boost to struggling European economies. France is in a peculiar position – it has been at the forefront of the movement to ban fracking and has prohibited even the exploration for non-conventional hydrocarbons on its territories, but its feeble economy will benefit from the low energy costs brought about by the availability of American shale-derived oil and gas.

Other Rouez activists recognized that new sources of metals were necessary, but they were adamant that the mining should be done in a manner that caused minimal environmental damage … and preferably far, far away from where they lived. While some metals can be imported to Europe from countries with stable and competent governments like Canada and Australia, most come from Africa, Asia and South America where governments are commonly too weak, too corrupt, or too poor to ensure that mining is done properly. The concerned citizens of Europe and other rich countries prefer that people in other regions put up with the nuisance associated with mining, and if this means that mining is done in places where the operation cannot be done properly, so be it.

The locavore movement argues that we should consume only what is produced within a short distance from where we live. The principle is normally applied to food, and is based on sound principles. Local consumption provides employment to local people and reduces ‘food miles’ – the distance from producers to consumers. But aren’t these ideas equally valid for metals? Is it reasonable and logical to shun green beans from Kenya while consuming copper from the Congo? The Aitik mine illustrates that metals can be produced correctly and efficiently in Europe. This mine, which is located in the far north of Sweden and respects stringent Swedish social and environmental norms, efficiently exploits ore containing only 0.27% Cu, far below the global average.

Rather than adopting the dubious stance that others should bear the burden of supplying the metals needed for European society, is it not more principled to argue that mining should done correctly, and in our own backyard?

By Nick Arndt, Professor at ISTerre & current GMPV Division President

 

Imaggeo on Mondays: Marble outcrops

This week’s Imaggeo on Mondays image was taken by Prof. Konstantinos Kourtidis, in Alykes, along the southern coast of Thassos island, where he photographed the beautifully white marbles that outcrop along the coastline. The Greek Island of Thassos is located in northeastern Greece, close to the coast of Thrace in the Aegean Sea, although geographically it belongs to the Macedonia region. There is geological evidence to suggest that at one time, the island was joined to the mainland.

Marble Outcrops. (Credit: Konstantinos Kourtidis via imaggeo.egu.eu)

Marble Outcrops. (Credit: Konstantinos Kourtidis via imaggeo.egu.eu)

“The island is formed of alternating marbles, gneisses and schists” explains Konstantinos, “in the southern Thassos area, where this image was taken, Palaeozoic (around 400 million years in age) and Mesozoic metamorphosed rocks of the Rhodopi Massif and more recent sedimentary Miocene formations (around 25 million years old) are exposed.” The sediments in this area are dominated by conglomerates, sandstones and argillaceous sands.

Banded iron formations, also known as BIFs, are repeated thin layers of iron-rich material which are alternated with shales and/or silica rich cherts. There are numerous occurrences of BIFs across Thassos island and this is interesting because BIFs are typical sediments of the Precambrian rock record and can indicate the presence of rocks which are in excess of 3 billion years old! It is unusual to find BIFs in the younger rocks record. On Thassos Island their formation is associated with changes in the depositional environment and climate.

During the formation of BIFs, volcano-sedimentary units become heavily mineralised and rich in iron and manganese oxides. In addition the island has dense accumulations of zinc and lead. As a result there is a long mining history on Thassos, dating back to 13,000 BC. The marbles seen in today’s Imaggeo on Mondays image belong to an ancient mine at sea level which was “exploited given the excellent quality of the marbles” states Konstantinos. The stone has been used in art projects, monuments and the building of numerous ancient temples.

Ancient Marble Quarry in Thassos, Eastern Macedonia, Greece. (Credit: Konstantinos Kourtidis via imaggeo.egu.eu)

Ancient marble quarry in Thassos, Eastern Macedonia, Greece. (Credit: Ioannis Daglis via imaggeo.egu.eu)

Given the islands rich archeological and geological heritage the Greek Institute of Geology and Mineral Exploration (IGME) has produced a geological guide for the southern part of the island, which also includes 4 geotrails and is available online.

GeoCinema Online: Our changing Climate

Welcome to the third instalment of Geocinema! The focus this week is on climate change and how it impacts on local communities. Sit back, relax and make sure you’ve got a big bucket of popcorn on the go, as this post features a selection of short documentaries as well as trailers of feature length films.

Documenting the effects of the warming conditions on the surface of our planet is the primary focus of many researchers but understanding how these changes directly affect communities is just as important. The two are intrinsically linked and the films this week  highlight just to what extent this is true.

Thin Ice

In this feature film, a global community of researchers, from the University of Oxford and the Victoria University of Wellington, race to understand the science behind global warming and our planet’s changing climate.

Find detailed information of the project here.

 

High Mountain Glacial Watershed Program

How are communities in mountainous regions affected by significant watershed? In the film, scientist try to find a way to better manage these events.

 

The wisdom to Survive

What are the challenges of adapting to an ever changing climate? The film explores how we can adjusts to living in the wake of this significant challenge through talking to leaders in the realms of science, economics and spirituality.

 

Glacial Balance

Humans have depended on supplies of water since the dawn of mankind.  Ever changing weather patterns means supplies of water are shifting and communities are having to relocate to access fresh provisions. Glacial Balance takes us on a journey from Colombia to Argentina, getting to know those who are affected by melting glacial reserves in the Andes.

 

Enjoyed the series so far? There are more films you can catch up on here and here.

We will explore further facets of our ever changing planet in the next instalment of GeoCinema, stay tuned to the blog for more posts!

Credits

Thin Ice: Keith Suez, http://thiniceclimate.org/

High Mountain Glacial Watershed Program : Daniel Byers, http://skyshipfilms.com/videos

The Wisdom to Survive: Gwendolyn Alston, http://vimeo.com/77314166

Glacial Balance: Ethan Steinman, http://www.glacialbalance.com/

GeoCinema Online: The Geological Storage of CO2

 Welcome to week two of GeoCinema Screenings!

In a time when we can’t escape the fact that anthropogenic emissions are contributing to the warming of the Earth, we must explore all the options to reduce the impact of releasing greenhouse gases into the atmosphere. The three films this week tackle the challenge of separating CO2 from other emissions and then storing it in geological formations deep underground (Carbon Capture and Storage, CCS).

Infografics of the CO2 Storage at the pilot site in Ketzin (modified after: Martin Schmidt, www.starteins.de) Credit: http://www.co2ketzin.de/nc/en/home.html

Infografics of the CO2 Storage at the pilot site in Ketzin (modified after: Martin Schmidt, www.starteins.de) Credit: http://www.co2ketzin.de/nc/en/home.html

Geological Conditions and Capacities

Porous rocks with good permeability have, in Germany and world-wide, the highest potential for geological CO2 storage. Where do these rocks occur? And which further criteria do potential CO2 storage sites need to meet?

Ketzin Pilot Site

At the Ketzin pilot site in Brandenburg, Germany, CO2 has been injected into an underground storage formation since June, 2008. …”. The monitoring methods used at the pilot site Ketzin are among the most comprehensive in the field of CO2 storage worldwide. Of importance is the combination of different monitoring methods, each with different temporal and spatial resolutions. Which methods are used? And what has already been learned?

Scientific Drilling at the Pilot Site Ketzin

Well Ktzi203 offers, for the first time, the unique opportunity to gain samples ) from a storage reservoir that have been exposed to CO2 for more than four years. The film follows how the samples were collected and studied.

 

You can view all three films and journey through the exploration of CCS here.

Have you enjoyed the films? Why not take a look the first posts in this series: Saturn and its icy moon or some of the films in last year’s series?

Stay tuned to the next post of Geo Cinema Online for more exciting science videos!

Credits

All three films are developed as part of the Forshungsprojekt, COMPLETE, Pilotstandort Ketzin. (Source).

Follow

Get every new post on this blog delivered to your Inbox.

Join other followers: