GeoLog

Cryospheric Sciences

Geosciences Column: Fire in ice – the history of boreal forest fires told by Greenland ice cores.

Burning of biomass contributes a significant amount of greenhouses gases to the atmosphere, which in turn influences regional air quality and global climate. Since the advent of humans, there has been a significant increase in the amount of biomass burning, particularly after the industrial revolution. What might not be immediately obvious is that, (naturally occurring) fires also play a part in emitting particulates and greenhouse gases which can absorb solar radiation and contribute to changing Earth’s climate. Producing a reliable record of pre-industrial fire history, as a benchmark to better understand the role of fires in the carbon cycle and climate system, is the focus of research recently published in the open access journal, Climate of the Past.

Forest fires.  Credit: Sandro Makowski (distributed via imaggeo.egu.eu) http://imaggeo.egu.eu/view/916/

Forest fires. Credit: Sandro Makowski (distributed via imaggeo.egu.eu)

Did you know the combustion of biomass can emit up to 50% as much CO2 as the burning of fossil fuels? The incomplete burning of biomass during fires also produces significant amounts of a fine particle known as black carbon (BC). Compare BC to more familiar greenhouse gases such as methane, ozone and nitrous oxide and you’ll find it absorbs more incoming radiation than the usual suspects. In fact, it is the second largest contributor to climate change.

NEEM camp position and representation of boreal vegetation and land cover between 50 and 90 N. Modified from the European Commission Global Land Cover 2000 database and based on the work of cartographer Hugo Alhenius UNEP/GRIP-Arendal (Alhenius, 2003). From Zennaro et al., (2014).

NEEM camp position and representation of boreal vegetation and land cover between 50 and 90 N. Modified from the European Commission Global Land Cover 2000 database and based on the work of cartographer Hugo Alhenius UNEP/GRIP-Arendal (Alhenius, 2003). From Zennaro et al., (2014). Click to enlarge.

The boreal zone contains 30% of the world’s forests, including needle-leaved and scale-leaved evergreen trees, such as conifers. They are common in North America, Europe and Siberia, but fires styles in these regions are diverse owing to differences in weather and local tree types. For instance, fires in Russia are known to be more intense than those in North America, despite which they burn less fuel and so produce fewer emissions. All boreal forest fires are important sources of pollutants in the Arctic. Models suggest that in the summertime, the fires in Siberian forests are the main source of BC in the Artic and shockingly, exceed all contributions from man-made sources!

To build a history of forest fires over a 2000 year period the researchers used ice cores from the Greenland ice sheet. Compounds, such as ammonium, nitrate, BC and charcoal (amongst others), are the product of biomass burning, and can be measured in ice cores acting as indicators of a distant forest fires. Measure a single compound and your results can’t guarantee the signature is that of a forest fire, as these compounds can often be released during the burning of other natural sources and fossil fuels. To overcome this, a combined approach is best. In this new study, researchers measured the concentrations of levoglucosan, charcoal and ammonium to detect the signature of forest fires in the ice. Levoglucosan is a particularly good indicator because it is released during the burning of cellulose – a building block of trees – and is efficiently injected into the atmosphere via smoke plumes and deposited on the surface of glaciers.

The findings indicate that spikes in levoglucosan concentrations measured in the ice from the Greenland ice sheet correlate with known fire activity in the Northern Hemisphere, as well as peaks in charcoal concentrations. Indeed, a proportion of the peaks indicate very large fire events in the last 2000 years. The links don’t end there! Spikes in concentrations of all three measured compounds record a strong fire in 1973 AD. Taking into account errors in the age model, this event can be correlated with a heat wave and severe drought during 1972 CE in Russia which was reported in The New York Times and The Palm Beach Post, at the time.

Ice core. Credit: Tour of the drilling facility by Eli Duke, Flickr.

Ice core. Credit: Tour of the drilling facility by Eli Duke, Flickr.

The results show that a strong link exists between temperature, precipitation and the onset of fires. Increased atmospheric CO2 leads to higher temperatures which results in greater plant productivity, creating more fuel for future fires. In periods of draught the risk of fire is increased. This is confirmed in the ice core studied, as a period of heightened fire activity from 1500-1700 CE coincides with an extensive period of draught in Asia at a time when the monsoons failed. More importantly, the concentrations of levoglucosan measured during this time exceed those of the past 150 years, when land-clearing by burning, for agricultural and other purposes, became common place. And so it seems that the occurrence of boreal forest fires has, until now, been influenced by variability in climate more than by anthropogenic activity. What remains unclear is what the effects of continued climate change might have on the number and intensity of boreal forest fires in the future.

By Laura Roberts Artal, EGU Communications Officer

 

Reference

Zennaro, P., et al.: Fire in ice: two millennia of boreal forest fire history from the Greenland NEEM ice core, Clim. Past, 10, 1905-1924, doi:10.5194/cp-10-1905-2014, 2014.

Imaggeo on Mondays: High altitude glacier monitoring

What a place to work: Spectacular views from the top of the rugged and icy peaks of Tien Shan mountain range. The desire to better understanding global climate change took Leo Sold to this remote area of Central Asia. The frozen slopes of ice and snow in today’s Imaggeo on Mondays photograph hold some of the keys to understanding how the glaciers in this remote region are being affected by a warming climate.

High altitude glacier monitoring Credit: Leo Sold (distributed via imaggeo.egu.eu)

High altitude glacier monitoring Credit: Leo Sold (distributed via imaggeo.egu.eu)

Glacier changes are known to be excellent indicators of climatic change and are therefore monitored around the world. However, some regions have a much higher coverage of measurements than other, often remote areas. Additionally, long time-series of glacier measurements are rare even on the global scale but are indispensable for a sound data basis to study future glacier changes. Thus, having a long-term measurement series in a region like the Tien Shan is a real asset for the work of glaciologists. Central Asia has a long tradition of glacier monitoring but unfortunately many ongoing monitoring programs were interrupted in the mid-1990s after the collapse of the Soviet Union. Although the suspended time-series already provide a great source of information, their continuation is fundamental for conducting future studies on Central Asian glaciers.

This image was taken in summer 2013 on the Suek Zapadniy glacier located in the Inner Tien Shan, Kyrgyzstan.Because snow-covered crevasses cannot always be identified at the snow surface the two researchers are roped up while taking snow depth measurements at 4500m above sea level. The monitoring of Suek Zapadniy glacier is part of the wider CATCOS project (Capacity Building and Twinning for Climate Observing Systems), which aims at improving the coverage with climate-related observations in areas were measurements are rare. It is funded by the Swiss Agency for Development and Cooperation (SDC) and is coordinated by the Swiss Federal Office of Meteorology and Climatology (MeteoSwiss). Within this project, the University of Fribourg (Switzerland) and the WGMS (World Glacier Monitoring Service) re-established a glacier monitoring programme on multiple glaciers in the Tien Shan and Pamir range in Kyrgyzstan, in close collaboration with the GFZ Potsdam (German Research Center for Geoscience, Potsdam), leading the CAWa Project (Central Asian Waters), and the Central-Asian Institute for Applied Geoscience (CAIAG) located in Kyrgyzstan. Notably, the project also focuses on capacity building – meaning, field campaigns involve on-site training of researchers in Kyrgyzstan and Switzerland.

The subset of glaciers chosen for the monitoring program is based on the availability of previous or historical data, the accessibility, and their distribution across the region. Annual mass balance measurements have been carried out since the summer of 2010. Their aim is to establish the difference between the amount of snow that is accumulated on the glacier during winter and the amount of ice melted during the summer months. Integrated over the entire glacier area, this provides a measure for the mass change of a glacier and, thus, for its response to climate changes. In the low-altitude areas of a glacier where summer melting exceeds the quantity of snow accumulated in winter, mass balance measurements involve drilling and maintenance of ablation stakes. These stakes are commonly made of plastic and are inserted into the glacier at a known depth, providing a bench mark against which the glacier thickness changes can be measured. In high altitudes snow can outlast the entire year, allowing the glacier to gain mass. The accumulation is measured as snow depth and its density by means of digging snow pits. Together, ablation and accumulation measurements provide the glacier mass balance. Since 2010 Suek Zapadniy glacier loses 0.4m water equivalent each year, referring to the water level if snow and ice was melted and distributed over the glacier.

“Ideally, summer measurements at the end of the hydrological year would be complemented by winter accumulation measurements in spring. However, reaching such remote areas involves an immense logistical effort under difficult conditions,” explains Leo.

Black Abramov glacier. Before the fall of the Soviet Union, Abramov glacier provided one the the longest continuous glacier mass balance records, dating back to 1968. In 2011, a global research network re-established a monitoring program in cooperation with local partners. The picture highlights the important role of surface albedo in terms of glacier ablation. Credit: Leo Sold (distributed via imaggeo.egu.eu

Black Abramov glacier. Before the fall of the Soviet Union, Abramov glacier provided one the the longest continuous glacier mass balance records, dating back to 1968. In 2011, a global research network re-established a monitoring program in cooperation with local partners. The picture highlights the important role of surface albedo in terms of glacier ablation. Credit: Leo Sold (distributed via imaggeo.egu.eu

By Laura Roberts, EGU Communications Officer and Leo Sold, PhD Student at the University of Fribourg

If you pre-register for the 2015 General Assembly (Vienna, 12 – 17 April), you can take part in our annual photo competition! From 1 February up until 1 March, every participant pre-registered for the General Assembly can submit up three original photos and one moving image related to the Earth, planetary, and space sciences in competition for free registration to next year’s General Assembly!  These can include fantastic field photos, a stunning shot of your favourite thin section, what you’ve captured out on holiday or under the electron microscope – if it’s geoscientific, it fits the bill. Find out more about how to take part at http://imaggeo.egu.eu/photo-contest/information/.

Imaggeo on Mondays: A solitary floating island

With 2014 officially named the hottest year on record, there is evidence of the effects of rising global temperatures across the globe. The solitary, shimmering iceberg in today’s Imaggeo on Mondays photograph is a reminder that one of the best places to look for evidence of change is in glaciers. Daniela Domeisen tells the story of this lonely frozen block of ancient ice.

Iceberg on Tasman glacier lake. Credit: Daniela Domeisen (distributed via imaggeo.egu.eu)

Iceberg on Tasman glacier lake. Credit: Daniela Domeisen (distributed via imaggeo.egu.eu)

The picture shows an iceberg on Tasman glacier lake in the Southern Alps of New Zealand, in the centre of Aoraki / Mount Cook National Park. The lake consists of melt water from the Tasman glacier, which calves into the lake at its far end. The glacier is one of the largest in New Zealand and flows along New Zealand’s highest peaks, Mt Tasman and Mt Cook.

As most glaciers on Earth, the glaciers in Aoraki / Mount Cook National Park are retreating at a fast pace. The lower parts of the Tasman glacier are at less than 1000m above sea level and are therefore melting especially fast. The Tasman glacier lake has formed over the past two to three decades and has in the meantime reached a length of several kilometers. It is projected to almost double in size as the glacier retreats further.

Icebergs constantly calve from the Tasman glacier into the lake and drift down the lake, driven by a weak current towards the lake’s outflow while melting in the process. The ice contained in the icebergs is several thousand years old, beautifully transparent and clean when looking at a single piece of it.

The pictured iceberg was about 10 meters wide. From its shape, and melting pattern, it is likely that it had turned to its side after calving into the lake. With some force it was possible to tip the smaller icebergs and see a shiny blue surface which had been beautifully polished by the water.

On the lake, everything was completely peaceful and quiet, except for the distant sound of a continuous rippling and trickling coming from the moraines on the sides of the lake, as pictured in the background of the photo. Stones and rocks of various sizes slid down and fell into the lake as the ice inside the moraines melted in the bright, sunny and warm January weather.

The changes which are observed in most places as a result of the changing climate are often either too slow to be observed or invisible to the naked eye. The glacier, its lake and icebergs, however, are continuously changing, and a couple of hours spent on the water give a lively impression of a quiet place where things are changing fast enough to be able to observe a notable difference between the time one enters and leaves the place. The beauty of the glacier and its lake with the glittering icebergs provide a spectacular glimpse of a transient place.

By Daniela Domeisen, Research Analyst, MarexSpectron, London

If you pre-register for the 2015 General Assembly (Vienna, 12 – 17 April), you can take part in our annual photo competition! From 1 February up until 1 March, every participant pre-registered for the General Assembly can submit up three original photos and one moving image related to the Earth, planetary, and space sciences in competition for free registration to next year’s General Assembly!  These can include fantastic field photos, a stunning shot of your favourite thin section, what you’ve captured out on holiday or under the electron microscope – if it’s geoscientific, it fits the bill. Find out more about how to take part at http://imaggeo.egu.eu/photo-contest/information/.

Imaggeo on Mondays: Iceberg at midnight

Standing on the vast expanse of gleaming white sea ice of the Atka Bay, Michael Bock took this stunning picture of an Antarctic iceberg. The days, during the Antarctic summer, are never ending. Despite capturing the image at midnight, Michael was treated to hazy sunlight.

Icebergs at midnight. Credit: Michael Bock (distributed via imaggeo.egu.eu)

Icebergs at midnight. Credit: Michael Bock (distributed via imaggeo.egu.eu)

“Clearly visible [in the iceberg] are the annual snow accumulation layers which illustrate how the ice archive works.; as you look down the icy face, the ice gets older,” explains Michael. As more snow accumulates on the surface of the glacier, the underlying layers of snow are compressed by the weight from above, hence layers become thinner with increasing depth. On the ice shelf or on the Antarctic plateau these accumulation layers can only be seen when digging a snow pit. The obvious limitation of this is that only a few meters can be excavated with spades, limiting the observations one can carry out. Instead, to gain information about what happens deep within the ice pack, drill cores are usually used. Long cores of the layers of ice can be extracted , providing useful data. “One can drill into the ice (typically on the Antarctic plateau on ice divides or domes) reaching down to bedrock, with the retrieved ice core revealing long records of climatic history,” adds Michael. Deep ice cores can be more than 3000 m long. Depending on e.g. annual mean temperature and accumulation rate the age and resolution of these archives can vary greatly. Whilst this iceberg cannot be studied directly due to hazards associated with working underneath it does “serve as a beautiful visualisation of what we are searching for in ice core science”, explains Michael.

By Laura Roberts Artal and Michael Bock.

If you pre-register for the 2015 General Assembly (Vienna, 12 – 17 April), you can take part in our annual photo competition! From 1 February up until 1 March, every participant pre-registered for the General Assembly can submit up three original photos and one moving image related to the Earth, planetary, and space sciences in competition for free registration to next year’s General Assembly!  These can include fantastic field photos, a stunning shot of your favourite thin section, what you’ve captured out on holiday or under the electron microscope – if it’s geoscientific, it fits the bill. Find out more about how to take part at http://imaggeo.egu.eu/photo-contest/information/.

Follow

Get every new post on this blog delivered to your Inbox.

Join other followers: