GeoLog

Atmospheric Sciences

Imaggeo on Mondays: Moving images – Photo Contest 2016

Since 2010, the European Geosciences Union (EGU) has been holding an annual photo competition and exhibit in association with its General Assembly and with Imaggeo – the EGU’s open access image repository.

In addition to the still photographs, imaggeo also accepts moving images – short videos – which are also a part of the annual photo contest. However, 20 or more images have to be submitted to the moving image competition for an award to be granted by the judges.

This year saw seven interesting, beautiful and informative moving images entered into the competition. Despite the entries not meeting the required number of submissions for the best moving image prize to be awarded, three were highly ranked by the photo contest judges. We showcase them in today’s imaggeo on Mondays post and hope they serves as inspiration to encourage you to take short clips for submission to the imaggeo database in the future!


Aerial footage of an explosion at Santiaguito volcano, Guatemala. Credit: Felix von Aulock (distributed via imaggeo.egu.eu)

During a flight over the Caliente dome of Santiaguito volcano to collect images for photogrammetry, this explosion happened. At this distance, you can clearly see the faults along which the explosion initiates, although the little unmanned aerial vehicle is shaken quite a bit by the blast.


Undulatus asperitus clouds over Disko Bay, West Greenland. Credit: Laurence Dyke(distributed via imaggeo.egu.eu)

Timelapse video of Undulatus asperitus clouds over Disko Bay, West Greenland. This rare formation appeared in mid-August at the tail end of a large storm system that brought strong winds and exceptional rainfall. The texture of the cloud base is caused by turbulence as the storm passed over the Greenland Ice Sheet. The status of Undulatus asperitus is currently being reviewed by the World Meteorological Organisation. If accepted, it will be the first new cloud type since 1951. Camera and settings: Sony PMW-EX1, interval recording mode, 1 fps, 1080p. Music: Tycho – A Walk.

Lahar front at Semeru volcano, Indonesia. Credit: Franck Lavigne (distributed via imaggeo.egu.eu)

Progression of the 19 January 2002 lahar front in the Curah Lengkong river, Semeru volcano, Indonesia. Channel is 25 m across. For further information, please contact me (franck.lavigne@univ-paris1.fr)

 

The final days of the mountain glaciers

The final days of the mountain glaciers

In 1896 British lawyer, mountaineer and author Douglas Freshfield climbed an obscure mountain in the Caucasus called Kasbek and in his book detailing his adventures he described the mountain:

“From this point the view of Kasbek is superb: its whole north-eastern face is a sheet of snow and ice, broken by the steepness of the slope into magnificent towers, and seamed by enormous blue chasms.”

D Freshfield (1986) The Exploration of the Caucasus, page 93

A photo of the mountain taken at the same time highlights the Gergeti glacier (called at the time the Ortsveri glacier) running down the centre of the image. In 2015 Levan Tielidze took another photo of the same view which highlighted a shocking change.

The photo above echoes photos taken of mountain glaciers from across the globe over the last 100 years. All these photos, when compared with their older counterparts, show the comprehensive retreat of mountain glaciers in every country. The retreat of mountain glaciers was called a ‘canary in the coal mine’ along with other indicators of global climate change. But new data presented this month at the European Geosciences Union General Assembly, shows us that that canary is now past saving.

Ben Marzeion, professor of Geography and Climate Science at the University of Bremen, has found that mountain glacier retreat (and eventual disappearance) is now inevitable. In a session relating to the Paris agreements (where 195 countries from around the globe agreed to work towards limiting global temperature change to two degrees) Marzeion presented evidence that indicates that even if that ambitious target were achieved, 60% of current mountain glaciers will still melt away. In fact the impacts of climate change are more severe than even this number suggests. Prof Marzeion explains:

‘Even if climate warming were to stop today – which is physically impossible – about one third of the glacial ice in the world would still melt in the long term.’

Is this a farewell to the mountain glacier? (meeting of the penitents credit Simon Gascoin)

Is this a farewell to the mountain glacier? Credit: Simon Gascoin (distributed via imaggeo.egu.eu)

This is because the ice in the mountain glaciers responds to climate change with a time delay. Mountain ice is not sustainable and more than half of the ice in a mountain glacier is responding to temperature change that has already happened. The ice of the mountain glaciers has been melting for decades and once that process begins, it is very difficult to stop. Smaller glaciers and those at lower altitudes are at greater risk of complete loss, but Professor Marzeion says that any glacier where the summer snowline rises above the mountain peak will not survive. This has wider implications for water use in mountainous areas.

‘Saving the glaciers is an illusion in many mountain ranges,’ says Marzeion. ‘We will have to adapt to the consequences of glacier melt. This will affect the coastal regions of the world, but also populations in the mountainous regions, who will have one fewer source of water at their disposal in summer.’

Although the question of global temperature change is still one that we have to solve, it seems that our desire to take responsibility for our actions comes too late for those ‘magnificent towers’ and ‘blue chasms’ that Douglas Freshfield described over 100 years ago.

By Hazel Gibson, EGU General Assembly Press Assistant and Plymouth University PhD student.

Hazel is a science communicator and PhD student researching the public understanding of the geological subsurface at Plymouth University using a blend of cognitive psychology and geology, and was one of our Press Assistants during the week of the 2016 General Assembly.

Photo Contest finalists 2016 – who will you vote for?

The selection committee received over 400 photos for this year’s EGU Photo Contest, covering fields across the geosciences. The fantastic finalist photos are below and they are being exhibited in Hall X2 (basement, Brown Level) of the Austria Center Vienna – see for yourself!

Do you have a favourite? Vote for it! There is a voting terminal (also in Hall X2), just next to the exhibit. The results will be announced on Friday 22 April during the lunch break (at 12:15).

 'Icebound blades of grass' . Credit: Katja Laute (distributed via imaggeo.egu.eu). A close up of blades of grass totally coated with ice. The photo was taken at sunset along the shoreline of Selbusjøen, a lake in middle Norway. The coating of the ice was built through the interplay of wave action and the simultaneously freezing of the water around the single blades of grass.

‘Icebound blades of grass’. Credit: Katja Laute (distributed via imaggeo.egu.eu). A close up of blades of grass totally coated with ice. The photo was taken at sunset along the shoreline of Selbusjøen, a lake in middle Norway. The coating of the ice was built through the interplay of wave action and the simultaneously freezing of the water around the single blades of grass.

 'There is never enough time to count all the stars that you want.' . Credit: Vytas Huth (distributed via imaggeo.egu.eu). The centre of the Milky Way taken near Krakow am See, Germany. Some of the least light-polluted atmosphere of the northern german lowlands.

‘There is never enough time to count all the stars that you want’. Credit: Vytas Huth (distributed via imaggeo.egu.eu). The centre of the Milky Way taken near Krakow am See, Germany. Some of the least light-polluted atmosphere of the northern german lowlands.

 'Full moon over Etna's fire'. Credit: Severine Furst (distributed via imaggeo.egu.eu). Etna is one of the most active volcano on Earth but also one the most monitored. As soon as instruments show any signs of volcanic activity, scientists from the Istituto Nazionale di Geofisica e Vulcanologia (INGV) of Catania urge to the summit to gather various eruption data. In this summer evening, the fresh wind sweep the clouds to reveal the rise of the full moon over one of Etna's summit craters where a strombolian eruption is taking place.

‘Full moon over Etna’s fire’. Credit: Severine Furst (distributed via imaggeo.egu.eu). Etna is one of the most active volcano on Earth but also one the most monitored. As soon as instruments show any signs of volcanic activity, scientists from the Istituto Nazionale di Geofisica e Vulcanologia (INGV) of Catania urge to the summit to gather various eruption data. In this summer evening, the fresh wind sweep the clouds to reveal the rise of the full moon over one of Etna’s summit craters where a strombolian eruption is taking place.

 'There is never enough time to count all the stars that you want.' . Credit: Vytas Huth (distributed via imaggeo.egu.eu). Ice on Jokulsarlon beach in Iceland. Ice calving off the Breidamerkurjokull, one of the glaciers comprising the Vatnajokull, the largest glacier in Iceland. The is retreating rapidly, and in the process has created a large glacial lagoon known for its spectacular icebergs.

‘Glowing Ice’. Credit: Vytas Huth (distributed via imaggeo.egu.eu). Ice on Jokulsarlon beach in Iceland. Ice calving off the Breidamerkurjokull, one of the glaciers comprising the Vatnajokull, the largest glacier in Iceland. The is retreating rapidly, and in the process has created a large glacial lagoon known for its spectacular icebergs.

 'Ice lace flower'. Credit: Maria Elena Popa (distributed via imaggeo.egu.eu). Early morning shot of a spider web with frozen water droplets. The photo has been turned upside down, to make it look like a flower.

‘Ice lace flower’. Credit: Maria Elena Popa (distributed via imaggeo.egu.eu). Early morning shot of a spider web with frozen water droplets. The photo has been turned upside down, to make it look like a flower.

 Sphalerite's "Transformer"'. Credit: Dmitry Tonkacheev (distributed via imaggeo.egu.eu). The bulk of Au wire "boards" on the dark-brown phase surface in the form of fascination crystals (usually arborescent). Some of them look like a weapon from the "Transformers" arsenal or parts of his armor. Also bright diamond luster of this creature makes our "Knight" even more ultra-modern.

‘Sphalerite’s “Transformer”‘. Credit: Dmitry Tonkacheev (distributed via imaggeo.egu.eu). The bulk of Au wire “boards” on the dark-brown phase surface in the form of fascination crystals (usually arborescent). Some of them look like a weapon from the “Transformers” arsenal or parts of his armor. Also bright diamond luster of this creature makes our “Knight” even more ultra-modern.

 'Nimbostratus painting the sky'. Credit: y María Burguet (distributed via imaggeo.egu.eu). This photo was taken in Valencia (Spain) during a storm formation. Nimbostratus are described as a grey cloud cover with a veiled appearance due to the precipitation (liquid or solid) holded within them. They are formed when a large layer of relatively warm and humid air ascend above a cold air mass. Together with the Altostratus, it is the core of a warm front.

‘Nimbostratus painting the sky’. Credit: María Burguet (distributed via imaggeo.egu.eu). This photo was taken in Valencia (Spain) during a storm formation. Nimbostratus are described as a grey cloud cover with a veiled appearance due to the precipitation (liquid or solid) held within them. They are formed when a large layer of relatively warm and humid air ascend above a cold air mass. Together with the Altostratus, it is the core of a warm front.

 'Living flows'. Credit: Marc Girons Lopez (distributed via imaggeo.egu.eu). River branches and lagoons in the Rapa river delta, Sarek National Park, northern Sweden. The lush vegetation creates a stark contrast with the glacial sediments transported by the river creating a range of tonalities.

‘Living flows’. Credit: Marc Girons Lopez (distributed via imaggeo.egu.eu). River branches and lagoons in the Rapa river delta, Sarek National Park, northern Sweden. The lush vegetation creates a stark contrast with the glacial sediments transported by the river creating a range of tonalities.

 'View of the Mausoleum'. Credit: Mike Smith (distributed via imaggeo.egu.eu). The north Antrim coast in Northern Ireland, featuring one of the most spectacular coastal roads. In the distance the Mussenden Temple, built in 1785 as a reclusive library 40 m above the Atlantic Ocean.

‘View of the Mausoleum’. Credit: Mike Smith (distributed via imaggeo.egu.eu). The north Antrim coast in Northern Ireland, featuring one of the most spectacular coastal roads. In the distance the Mussenden Temple, built in 1785 as a reclusive library 40 m above the Atlantic Ocean.

 'Frozen angel'. Credit: Mikhail Varentsov (distributed via imaggeo.egu.eu). Go-Pro camera, covered by hoarfrost, at sunrise, looks like fantasy-style angel with sword and banner. Photo made during NABOS-2015 expedition.

‘Frozen angel’. Credit: Mikhail Varentsov (distributed via imaggeo.egu.eu). Go-Pro camera, covered by hoarfrost, at sunrise, looks like fantasy-style angel with sword and banner. Photo made during NABOS-2015 expedition.

In addition, this year, to celebrate the theme of the EGU 2016 General Assembly, Active Planet, the photo that best captured the theme of the conference was selected by the judges. The winner is this stunning photo entitled ‘Mirror mirror in the sea…’, by Mario Hoppmann! Congratulations! This too is being exhibited in Hall X2 (basement, Brown Level) of the Austria Center Vienna.

 'Mirror Mirror in the sea...' . Credit: Mario Hoppmann (distributed via imaggeo.egu.eu). A polar bear is testing the strength of thin sea ice. Polar bears and their interaction with the cryosphere are a prime example of how the biosphere is able to adapt to an "Active Planet". They are also a prime example of how the anthropogenic influence on Earth's climate system endangers other lifeforms.

‘Mirror Mirror in the sea…’ . Credit: Mario Hoppmann (distributed via imaggeo.egu.eu). A polar bear is testing the strength of thin sea ice. Polar bears and their interaction with the cryosphere are a prime example of how the biosphere is able to adapt to an “Active Planet”. They are also a prime example of how the anthropogenic influence on Earth’s climate system endangers other lifeforms.

GeoEd: Using art in your science teaching and outreach. The why and the how.

GeoEd: Using art in your science teaching and outreach. The why and the how.

This month’s GeoEd post is brought to you by Dr. Mirjam S. Glessmer. Mirjam is a physical oceanographer turned instructional designer. She blogs about her “Adventures in Teaching and Oceanography” and tweets as @meermini. Get in touch if you are interested in talking about teaching and learning in the geosciences!

Sometimes we look for new ways to engage our students or the general public in discussions about our science. Today I would like to suggest we use art! Someone recently told me about her work on “STEAM”, which is STEM+Arts and apparently big on the rise. While I had never heard about it before, and initially found the idea a bit weird and artificial, there are certainly many occasions where thinking about topics in a more comprehensive way than just through disciplinary lenses could be of great benefit, both to get a fuller view of what is going on, as well as to maybe reach people in a different way, and therefore reach people that might not necessarily be interested in either of the parts by itself.

There are many different kinds of art that we can use in STEM teaching and outreach, ranging from art that uses science as its central theme to art that just happens to be displaying something we have a scientific interest in. And while in this blog post “art” is taken to mean visual art, you can think about this much more widely and include music, theatre, anything you can think of! Dream big!

Art that incorporates scientific data

One example of art that uses science as a central theme and that is very well suited for our purposes is the amazing art of Jill Pelto, who communicates scientific research through art. What that means is that she takes graphs of recent dramatic changes in the climate system, like sea level rise or melting glaciers, and uses them in her art as part of the image. For example, a graph of the global average temperature is integrated on the border between a burning forest and the flames leaping into the smoky sky. You’ll only notice it if you look carefully. Similarly, the boundary between the school of clown fish and the forest of anemones moving in the waves, showing the declining ocean pH which threatens this ecosystem (see figure below). Brian Kahn, Senior Science writer for Climate Central, describes Jill Pelto’s paintings as “Trojan horse for science to reach a public that doesn’t necessarily think about data points and models”.

And that is a great approach to using this art. But how else could we use art like this in teaching and outreach?

I could imagine using these kind of images in courses where students are to investigate a scientific topic in a project. Each group of students could be handed a different image, and they could be asked to figure out as much as possible about the topic and present it back to their peers. I would imagine that giving students a data set in such a visually appealing form would provoke an emotional connection and response much more easily than if they were presented with “just” the data. In the final exhibition, the art would work as great eye catchers to lure visitors into a topic.

I could also imagine using Jill Pelto’s art in a science outreach workshop. There, I would ask participating PhD students or scientists to take the one time series (or any other visual representation they have of their data that shows the most important part of their story) and, inspired by the art they saw, integrate their data into an eye-catching display that tells their story for them, which they present to the public at the end of the course.

Wow, this really makes me want to do this for my own research!

Art that visualizes scientific results

The best-known example of art that tells scientific stories is Greg Johnson’s “Climate change science 2013: Haiku“. A poster of all 20 illustrations is up in my office (Thanks, Joke and Torge!) and I can tell you – it is a great conversation starter! The haikus – a traditional form of Japanese poetry – and illustrations provide just enough information to spark curiosity, so I often find myself discussing climate change with my (non-climate scientist) colleagues. Clearly, the haikus would also work as excellent conversation starters in outreach!

Picture from Climate Change Science 2013 Haiku by Dr. Greg Johnson. Credit Sightline Institute, used with permission.

Picture from Climate Change Science 2013 Haiku by Dr. Greg Johnson. Credit Sightline Institute, used with permission.

In teaching, I would use Greg Johnson’s illustrated haikus to break the IPCC report’s summary for policymakers down into its chapters, and hand out one illustration per group. Depending on what kind of students I was teaching, I would either ask them to read the corresponding summaries, or browse the chapter, or read one of the original articles cited in that chapter. I might even ask them to find articles that might shed a different light on the (obviously oversimplified) message of the haikus. What kind of evidence would they want to see to shoot down those messages or in support of it? Those kind of thoughts are a very good practice for their own research where they always need to consider whether the conclusions they draw are the only possible ones. Especially since the illustrations immediately create an emotional involvement with the message of the haiku; this is such an important exercise!

Here, again, the art helps to make very complex science easily approachable, and would again be awesome as an eye catcher in an exhibition where student groups present their work to each other. (If you are worried about all the posters you are supposed to be printing, check out this post for a cheap and easy solution).

The haikus could also be used as inspiration when you ask your students to read articles and summarise them in a haiku plus drawing. This would be great practice to get to the point, and also it would be great practice for outreach. How cool would it be if your students had a piece of art and a short poem summarizing their theses?

For more inspiring illustrations of scientific articles, check out Greg Johnson’s blog. Maybe you’ll find an illustration of the article you were planning to have your students read in their next class?

Art that incidentally shows science we are interested in

Alternatively, take a  look at art that doesn’t explicitly focuses on science as its topic, but which can still be used to discuss science.

One example is given in the TED talk “the unexpected math behind Van Gogh’s `Starry Night´” by Natalya St. Clair, where the painting is deconstructed and put in the context of the development of mathematical theories for turbulence. I have linked the video below and it is totally worth watching!

The video could serve as a great first exposure to turbulence in a physics class and would make for a very interesting assignment in a flipped setting. It could also be watched in art class to help underline that art is a “serious” subject and not just a bit of splashing with paint (or whatever prejudices your audience might have).

Alternatively, you could ask your students to attempt a similar interpretation of a different picture. For example, when talking about different kinds of waves in your oceanography class, ask your students to browse a gallery of famous seaside paintings, online or “for real”, pick one painting and interpret the state of the sea, the shape of the clouds, the color of the light, to learn as much as possible about the weather conditions depicted in the painting. Always interesting, too: Check for consistency of wind direction from all the flags and sails and flying hair!

Alternatively, you could use a collection of pictures to talk about how knowledge in your field developed (for an example of how this could work for soil science, see Laura Roberts-Artal’s blog post).

See – so many ways to include art in your science teaching and outreach to capture new audiences’ interest or just look at your topic from a different angle!

How would you use art in your teaching and outreach? Let us know in the comments below!

By Mirjam S. Glessmer, Coordinator of Teaching Innovation at Hamburg University of Technology

Follow

Get every new post on this blog delivered to your Inbox.

Join other followers: