Geology for Global Development

Water and Sanitation

Wearing the Earth Down: The Environmental Cost of Fashion

Public Domain (https://pixabay.com/en/color-textile-fabric-tissue-2532495/)

Eloise Hunt is an Earth science student at Imperial College London, and coordinator of the GfGD University group there. Today we publish her first guest article for the GfGD blog, exploring the environmental cost of fashion.

When we think of pollution, we imagine raw sewage pumped into rivers, open-cast mines or oil spills. We don’t often think of our inconspicuous white shirt or new jeans.  But, the overall impact that the fashion industry has on our planet is shocking.  The production of clothing has been estimated to account for 10% of total carbon impact. The fashion industry has been argued to be “one of the greatest polluters in the world, second only to oil“, although there is a lack of data to verify this.

Following London Fashion Week 2017, I wanted to take this opportunity to reflect on the environmental impacts of the fashion industry. Whilst geoscience may not seem to link to fashion, once you look closer at the production and environmental costs of textiles, you can see they are coupled with situations where geoscientists may be involved. Geoscience alone cannot improve the world.  But, through collaborations between geoscientists, engineers and policy makers, real changes can take place.

The lack of sustainability in fashion can be blamed on four major factors.  Firstly, there is enormous energy consumption associated with clothing.  Production is concentrated in countries such as Bangladesh and China. Factories are powered by coal before garments are shipped to the rest of the world.  It is difficult to find reliable data on how much fuel is used to transport clothes.  Yet, we do know that in the US only 2% of clothing is domestically produced and globally 90% of fabrics are transported by cargo ship  (read more).  One of these ships can produce as much atmospheric pollution as 50 million cars in just one year.

Another major factor is cheap synthetic fibres increasingly replacing natural cotton or wool. Polyester and nylon are both synthetic, non-biodegradable, energy intensive and made from petrochemicals.  Polyester is rapidly increasing in value and is now in over half of all clothing. Nylon is absorbent and breathable making it a popular choice for sportswear manufacturers.  But, nylon production forms nitrous oxide, a greenhouse gas 310 times more potent than carbon dioxide. Viscose is another synthetic fibre which is derived from wood pulp; the material’s popularity in fashion has caused deforestation in Brazil and Indonesia.  These countries are home to rainforests, often described as the ‘lungs of the earth’, acting as our most effective carbon sink and oxygen source.

Even stepping away from synthetics, cotton is hardly innocent.  It is incredibly water intensive accounting for 2.6% of global water use. It takes 2,700 litres of water to produce the average cotton t-shirt. Furthermore, 99.3% of cotton growth uses fertilisers, which can cause runoff and eutrophication of waterways.  Uzbekistan, the 6th largest producer of cotton in the world, is an important example of ‘cotton catastrophe’.  In the 1950s, two rivers were diverted from the Aral Sea as a source of irrigation for cotton production.  As the sea dried up, it also became over-salinated and laden with fertiliser and pesticides as a result of agricultural runoff. Contaminated dust from the desiccated lake-bed saturated the air, creating a public health crisis with some studies linking this to abnormally high cancer rates. Groundwater up to 150 m deep has been polluted with pesticides and regional climate has become more extreme with colder winters and hotter summers.  Currently, water levels in the Aral are less than 10% of what they were 50 years ago (Fig. 1). Whilst this is a dramatic example of cotton farming, environmental problems have  occurred in other locations.

 

A comparison of the Aral Sea in 1989 (left) and 2014 (right). Credit: NASA. Collage by Producercunningham. PUBLIC DOMAIN

The final environmental issue with fashion is responsible consumption and production (SDG 11).  Water problems in cotton producing areas cannot be fixed without consumers being held responsible for ecological impacts in the producing areas.  Globally, 44% of water used for cotton growth and processing goes towards exports.  High demand produces 150 billion items of clothing annually, which equates to 20 new items per person every year. Then, on average, each garment is worn only 7 times before being dumped in landfill.  In the UK alone, £30 billion worth of clothing is buried unused in our closets.

Figure 2- Expanding childrens trousers to minimise clothes waste (Credit: Petit Pli website http://petitpli.com)

Faced with issues of energy consumption, the rise of synthetics, water consumption and fast fashion, it’s easy to feel powerless but with increased scrutiny come sustainable solutions. The UK James Dyson Award was recently bestowed upon the student inventor of Petit Pli, innovative children’s clothing with pleats which allows it to grow with children from four months to three years old (Fig. 2).  This could help tackle clothes waste and is a small yet significant thread of hope.  On an individual level, when you need new clothes opting for Fair Trade or organic fabrics is a simple way to minimise pesticide pollution and, in the case of cotton, reduce water consumption. Or, better yet choose second hand, vintage or upcycled items to prevent processing of more virgin fibres.

Fashion is not yet sustainable. We as consumers hold enormous power to persuade brands to make products that are clean, of high-quality and worth wearing.  People need to be taking fashion more seriously, not less.

**This article expresses the personal opinions of the author. These may not reflect official policy positions of Geology for Global Development. **

Guest Blog: Geoscience’s Role In Addressing Fluorosis In Tanzania

Megan Jamer is a geoscientist from Canada, and an avid cyclist and explorer. Megan is currently travelling around East Africa on bicycle, taking in some remarkable sites and observing first hand the relationship between geoscience and sustainable development. Megan has previously written about agroforestry, landslides, and disaster risk reduction in Rwanda. Her travels have since taken her to Tanzania, and her most recent blog explores geoscience and fluorosis…

It’s hard to ignore Janet’s ‘roasted teeth’, caused by too much fluoride. She’s from Arusha in the north but has moved to central Tanzania, saving for college by managing a small guesthouse. Fluorosis develops gradually, irreversibly damaging teeth and in extreme cases, bones. It’s also a source of stigma and embarrassment, especially when moving to a part of the country where residents have healthy teeth. When Janet offers a smile, it’s restrained.

Groundwater is essential to Tanzania’s—and Sub-Saharan Africa’s—resilience to climate change and waterborne diseases, especially for residents of rural and arid areas. Many Tanzanians already use groundwater for the majority of their daily needs, but fluoride is a major problem. By 2010 estimates, up to ten million Tanzanians were drinking water with unsafe levels of fluoride. It’s a problem that also affects new groundwater drilling programs.

Jerry cans are filled from holes dug into an empty riverbed during the dry season. Compared to these surface water sources, groundwater is more reliable and less polluted by bacteria. Photo author’s own.)

A previous article here on the GfGD blog discussed fluoride in Ethiopia and how to remove it from the water through defluoridation. These technologies are essential, but Principal Hydrogeochemist Pauline Smedley at the British Geological Survey cautions that ‘defluoridation should really be considered a last resort’.

Smedley is emphasizing the preventative work that reduces fluoride’s negative effects, work that geoscientists play an important part in. Defluoridation programs can be better-directed and safer water targeted through understanding fluoride’s distribution. This blog outlines what’s been done to that effect in Tanzania, and the work remaining.

The Risk of Fluoride

In 2008 Tanzania’s national fluoride guideline was lowered from 8 mg/L (ppm) to 4 mg/L, but remains far higher than the WHO (World Health Organization) recommended 1.5 mg/L. Drinking water in excess of the WHO guideline over a long period of time puts individuals, especially children, at risk of developing dental fluorosis. The balance between fluorosis and water scarcity has compelled the Tanzanian government to set its guidelines as it has.

High-fluoride regions in Tanzania have some of the lowest levels of ‘improved’ (safe, year-round, within a kilometer) water access in the country. These regions are generally arid, and their groundwater resources aren’t leveraged as much as they could be. The aquifers are complex, and fluoride adds further risk to drilling programs. A well is abandoned if it exceeds the national guideline.

A bridge crosses an empty riverbed in central Tanzania. Photo author’s own.

The challenge and opportunity is that within areas known to have high fluoride, there can also be safe groundwater, as its concentrations can vary significantly even within small areas. If an area is excluded from groundwater development for fear of fluoride, that decision needs to be warranted. Water security is at stake.

Investigating Distribution

In 2002, Smedley and colleagues at the BGS began to investigate fluoride distribution in central Tanzania. Micas, apatite and fluorite seemed to be the primary mineral sources of fluoride in the water. Basement granite containing these minerals is a common rock type on Tanzania’s central plateau, and where fractured it is a significant groundwater target.

Several questions demanded further attention. The relationship between fluoride concentrations and faults was unclear, and faults are a common target for higher flow rates. Significantly, deeper groundwater is generally expected to have more fluoride than shallow or surface water, but within the study area most types of water sources contained high levels—earth dams, rivers, and dug wells included. This did not bode well for predicting distribution based on depth. Because of shifts in the UK’s foreign aid policies, the BGS didn’t investigate further. Instead, more recent understanding of central Tanzania’s fluoride distribution comes from JICA, the Japan International Cooperation Agency. They’ve undertaken to map fluoride as a risk-reduction measure for their continued groundwater development in several regions.

In 2013 JICA reported their key findings, including that ‘there isn’t a difference in fluoride concentration according to geology’, at least not locally. They suggest that fracturing connects the aquifers of different rock types so much so that lithology is insufficient for predictions on a local scale. Even if rock types were reliable enough, the lithology indicated on base maps may not end up being representative of what’s drilled into for a deep (80 meters or more) well.

JICA proposes that topography might play a significant role in fluoride distribution, for its influence on the time groundwater resides in the host rock. In local and regional topographic lows, groundwater may have more time to develop high fluoride concentrations from evaporation and prolonged interactions between water and rock.

Acting On Distribution Studies

Understanding these controls is important, but doesn’t give enough resolution to help choose drilling locations. To address this, an important part of JICA’s strategy is having an accurate database of fluoride measurements, with corresponding information on depth, water source type and the concentrations of other elements affecting water quality. The database is used to make groundwater-prospecting maps that show how faults and existing well performance are spatially related to fluoride concentrations, measured or expected. One of these maps is shown below, guiding drilling decisions in Singida Region, central Tanzania.

Groundwater prospecting map with fluoride risk areas for JICA’s operations in Singida Region, central Tanzania. From a 2013 JICA report (click on image to open the report).

North of the central plateau, near to Tanzania’s border with Kenya, fluorosis is also a significant problem. This region lies along an arm of the East African Rift Valley, an active continental rift. The granites common to the central plateau give way to the North’s volcanic successions, intrusions and ashes rich in fluorine-bearing minerals. Groundwater in contact with these rock types can acquire very high fluoride concentrations. Other water sources become enriched in fluoride through input from geothermal fluids, or proximity to alkaline (soda) lakes.

A probability map of Africa showing the likelihood of excessive fluoride in groundwater. In blue are the areas affected by the East African Rift Valley. Tanzania is outlined in purple. Source: Click on image to show the 2004 report that this is adapted from.

In spite of these varied fluoride sources, safe groundwater also exists in northern Tanzania and throughout the rift valley. Recently a team of researchers prospected for a safer aquifer, employing studies of lithology, the type of water coming from springs and groundwater, aquifer flow patterns, fault and fracture networks and the potential for an aquifer to flow, as interpreted from geophysical surveys.

This prospecting led to the drilling of a groundwater well to serve a community with poor water security. The well exceeded the WHO guideline for fluoride but was within the national guideline and compared to other sources in the area, was a safer water point.  Learning from these results is one of the goals of FLOWERED, a research consortium focused on defluoridation in the context of climate change, working in different locations throughout the East African Rift Valley.

The FLOWERED consortium recently held their first international field trip and workshop in northern Tanzania. Photo taken from their website.

FLOWERED aims to better understand fluoride’s distribution while also implementing defluoridation technologies. This type of coordination is important, because focusing solely on defluoridation limits its effectiveness.

The Limits of Defluoridation

Tanzania currently focuses on bone char defluoridation: animal bones are fired in a kiln and ground to a powder, their calcium absorbing fluoride from water. There are bone char units installed throughout the country, customized to the needs of schools, households and communities.

An effective defluoridation program plans for the population, expected water use, cost, and availability of materials. The programs require caretakers within the community and regular testing to ensure that the process is still removing enough fluoride. With the bone char method, the amount of materials required depends on fluoride concentrations, which can change over time. These are significant obstacles, and currently defluoridation efforts fall far short of what is needed for Tanzanians.

A proactive defluoridation strategy identifies where the problematic groundwater areas are, and why. This is an essential link between distribution and mitigation. ‘Understanding distribution better plays a key role in identifying priority areas for mitigation,’ says Smedley.

In some areas, safe water is simply unavailable and defluoridation is the only option. However, other areas could be prioritized for safe-water prospecting, if they are identified by distribution studies and monitoring to be at risk for extremely high fluoride concentrations, similar to the process followed by the researchers in northern Tanzania.

Any alternative water sources found reduce the burden on defluoridation programs. Even an aquifer with relatively lower fluoride concentrations is beneficial; the lesser the concentrations, the fewer materials needed to make the water safe.

Communication is Key

In Tanzania water resources are managed by a wide range of stakeholders, including community members, government officials, the WASH (Water, Sanitation and Hygiene) sector, donors and NGOs. Communication among these groups is key to addressing fluoride and other water-quality issues effectively.

Existing knowledge needs to be shared among these groups. On this front there are several resources for those with computer and Internet access, including the Africa Groundwater Atlas and these water quality factsheets for Tanzania and other countries. Tanzania’s Water Point Mapping initiative has resulted in a searchable map that can be explored here, and efforts to make a National Fluoride Database are ongoing.

Rural communities have a different reality, with neither electricity nor literacy available to all residents. Here, in-person education becomes essential, as there is a lack of awareness about fluoride and fluorosis that persists today. Fluorosis isn’t life threatening, unlike diarrhoea and other water-borne illnesses, so a community with limited resources may choose to focus on more pressing water-quality issues. Nonetheless, residents need to be equipped with information to make informed decisions.

A public water point in central Tanzania. What might the community know about its quality? Photo author’s own.

Communication between different groups is also essential for gathering new data through research. Ongoing projects seem to be recognizing this need for collaboration. In addition to FLOWERED’s multi-faceted approach, JICA’s operations identify fluoride distribution is a key problem to continue studying, and recommend that defluoridation programs only be pursued where alternative safe water isn’t available.

Water sources acquire dangerously high fluoride concentrations because of a particular set of environmental conditions, but fluorosis is an interdisciplinary issue at the intersection of science, public health, culture and water planning. For geoscientists working on this issue, active collaboration with other groups is essential to addressing fluorosis while also improving groundwater access for communities.

**

Geoscience students out there: What do you learn about the connection between fluoride and geoscience in university? 

In researching this topic I spoke with WASH (Water, Sanitation and Hygiene) professionals, whose work in the East African Rift Valley includes water quality issues. If there are WASH professionals reading this: What geoscience information do you need to do your job well? How might geoscientists and the WASH sector better collaborate on new research?

World Water Day 2016

The 22nd March 2016 is World Water Day, an annual event organised by the United Nations to promote the vital importance of ensuring universal access to clean, safe water. Around 10% of the world (650 million people) still lack access to clean water. 

Water is essential for life. When communities don’t have clean water they are forced to drink dirty and dangerous water, causing illness and sometimes death. Communities may also have to walk several kilometres to collect their water, sometimes clean and in other cases dirty but the closest or only water source around.

Clean water can transform lives, having a direct impact on many other areas of development. As it is usually women and children who collect water, a sustainable, clean water supply close to homes means that children can attend school and enjoy an education. Women can engage in more income-generating activities, adult education and see improvements in gender equality. Health is also transformed across the community, with reductions in disease and premature deaths.

Daily collection of water in Tanzania (2014)

Daily collection of water in Tanzania (2014)

Great progress has been made in recent years in helping bring access to clean water to more and more people, but there is still a lot of work to do. Geologists in both research and practice have a significant role to play in identifying sources of water, managing water supplies and protecting them from contamination. The relevant and important knowledge that we already have needs to be effectively used to support local (often village level) water user committees, government water departments and NGOs operating in affected regions. Effective technical-capacity strengthening at all levels is vital to ensure that water supplies are sustainable and effective.

Find out more… At the EGU General Assembly, the Geological Society of London and Geological Society of America are co-organising a session on “Meeting the water needs of a growing global population: groundwater contamination, monitoring, mitigation and adaptation in developing countries (GSL/GSA sponsored session)”

The Impacts of Climate Change on Global Groundwater Resources (Part 4 of 4)

barry-christopherChristopher Barry is a doctoral researcher at the University of Birmingham. He has written for the GfGD Blog in the past – detailing his contribution to water projects in Burkina Faso and fundraising efforts to support such work. We have recently added a briefing note to our website, written by Christopher, describing the role of climate change on global groundwater resources. You can access the full briefing note here.

To help share the contents of this briefing note we are publishing a portion of it’s contents over a series of four blogs. This is the final instalment, with the rest available in our archives. At the end of each blog is a link to the full PDF, where you can read each section in its full context and find a full reference list.

6. Near-Surface Turbidity

6.1 How it Happens

Intense rainfall will lead to high-energy surface water.  This has the combined effect of flooding more ground due to higher river levels and picking up more material from the flooded land because of the higher energy of the water.  The material that is picked up will include sediment, but also harmful pathogens (harmful micro-organisms) that are found in excrement.  In short, much of the material on the ground is harmful for consumption and more intense water flow has a greater chance of picking this up and carrying it into the groundwater.  Turbidity of surface water has a detrimental effect on surface water and shallow groundwater.  Even when wells are covered, the effects of turbidity may be seen in shallow groundwater wells, though uncovered wells are affected more seriously.  It results from more intense wet seasons, as described in the previous section.

6.2 Threatened Areas

As this is an effect of shorter, more intense wet seasons, this is also a process to which semi-arid regions are vulnerable.  Human factors can also make a location particularly vulnerable, in particular poorly contained excrement, either from animals or humans.  Excrement placed near a drinking water source is always a hazard, but high-energy water flows make it increasingly likely that pathogens will enter the water source.  The type of water source is also important, with shallow wells, wells with improper casing and uncovered wells at the greatest risk.

6.3 Example

A study in Malawi (Pritchard et al., 2008) found that wells abstracting water from shallow groundwater were susceptible to contamination resulting from turbid water on the surface. The most serious form of contamination was microbiological, likely in many cases from nearby sites where human excrement had been dumped. Wells which were not covered at the surface consistently contained dangerous levels of pathogens, but many covered wells (about 90 % in the wet season) also failed to meet standards for safe drinking water for pathogens. Wet season results were worse than dry season and is likely to be due to intense discharge washing pathogen-carrying material into shallow groundwater. If climate change makes peak discharges more intense in the wet season, this problem is likely to worsen over time.

 

7. Parched Soil and Vegetation: Effects for Groundwater Recharge

7.1 How It Happens

The effect of climate change on the recharge of groundwater in semi-arid regions has not received enough scientific attention to be able to predict reliably.

On the one hand, longer and hotter dry seasons parches the topsoil, causing it to crack.  This actually assists the water from the next wet season in being taken into the soil and infiltrating into the groundwater, because water flowing over it ponds in the cracks, rather than flowing away and being lost into the sea.

On the other hand, the harsher dry season conditions lead to a loss of vegetation (plant life).  Vegetation helps groundwater recharge by holding rainwater in its leaves for a while before dropping it, and therefore reducing the intensity of water flow on the ground.  Tree roots also assist the infiltration of water through the soil into aquifers.

The interacting factors are depicted in Figure 3. Consequently, uncertainty exists as to what effect climate change will have on groundwater recharge with respect to surface conditions.

GWater4

Download the full briefing note (including a reference list) on the Water and Sanitation page of the GfGD website.