GeoLog

glaciers

Imaggeo on Mondays: A dramatic avalanche from Annapurna South

Imaggeo on Mondays: A dramatic avalanche from Annapurna South

The Annapurna massif is located in an imposing 55 km long collection of peaks in the Himalayas, which behave as a single structural block. Composed of one peak (Annapurna I Main) in excess of 8000 m, a further thirteen peaks over 7000 m and sixteen more of over 6000 m, the massif forms a striking structure within the Himalayas. Annapurna South (pictured in today’s featured image), the 101st tallest peak in the world, towers 7219 m above sea level.

Glaciers in High Mountain Asia, a region that includes the Himalayas, contain the largest volume of ice outside the polar regions. The water trapped, as ice, in the glaciers of the Himalayas is an important source of drinking water, water for irrigation and water for hydropower generation throughout the region. As the Earth’s climate changes and negatively affects glaciers world-wide, scientists are working hard to understand what increased glacier melting means for the communities which depend on them.

Emily Hill is one such scientist. Her and a team of colleagues spent 2 weeks at Annapurna Base Camp in Nepal conducting measurements on the debris covered South Annapurna Glacier.

“We frequently heard avalanches but often they were over too quick to capture on camera. Fortunately, this was one of the largest and the camera was at the ready. These avalanches are an important source of mass for the glacier below,” reminisces Emily.

Glaciers accumulate ice throughout the winter months, as snow adds to the glacial column during the cold months. In addition, avalanches deliver additional snow throughout the year.

“I’m not too sure of the scale of the avalanche, it could probably have been a couple of 100 m across. The avalanche occurred early afternoon when the solar radiation was highest and increased melt is likely to have caused the failure,” describes Emily.

Avalanches in the region are not only an important source of mass accumulation for many of the glaciers, they also pose a hazard not only to climbers of these mountains but also further down along the tourist trail up to Annapurna Base Camp, where there is an avalanche risk section of the route.

Imaggeo is the EGU’s online open access geosciences image repository. All geoscientists (and others) can submit their photographs and videos to this repository and, since it is open access, these images can be used for free by scientists for their presentations or publications, by educators and the general public, and some images can even be used freely for commercial purposes. Photographers also retain full rights of use, as Imaggeo images are licensed and distributed by the EGU under a Creative Commons licence. Submit your photos at http://imaggeo.egu.eu/upload/.

Imaggeo on Mondays: Tongue of a small giant

Imaggeo on Mondays: Tongue of a small giant

In a world where climate change causes many mountain glaciers to shrink away, bucking the ‘melting’ trend is not easy. In today’s post, Antonello Provenzale, a researcher in Italy, tells us of one glacier in the Alps which is doing just that.

Mountain glaciers are retreating worldwide, with the possible exception of the Karakoram area. For most glaciers, ablation (ice melt) during the warm season is stronger than the accumulation of new ice by snowfall. As a result, while glacier ice flows downhill, the accelerated melting at lower elevation forces the terminus of the glacier to retreat uphill, with a net loss of ice volume.

Such behavior is especially evident on the southern flank of the Alps, where many mountain glaciers have dramatically reduced their dimensions, often fragmenting into smaller, detached pieces.

An important exception is represented by the Miage glacier in Val Veny, Val d’Aosta, northwestern Italy, at the base of the Mount Blanc massif. This glacier is covered with a thick layer of debris, which protects the underlying ice from the direct heating by sunlight. The rocks which make up the debris are poor heat conductors and thus preserve the ice beneath them, making this glacier particularly stable.

This glacier is so stationary that vegetation and trees have grown on its margins and on the debris. Several ponds punctuate the surface of the glacier, as well as some areas on its sides. The Miage lake, for example, is directly in contact with the slowly flowing ice and it is sometimes run by large outburst waves generated by huge blocks of ice and rock falling into the lake water.

This picture was taken in September 2014, during a field excursion of the Italian Glaciological Committee. The image is a composition (stitch) of several images taken with a moderate wide angle lens on a rangefinder digital camera.

By Antonello Provenzale studies Geophysical Fluid Dynamics, Earth System processes and Geosphere-Biosphere interactions at the Institute of Geosciences and Earth Resources of the National Research Council of Italy.

Imaggeo is the EGU’s online open access geosciences image repository. All geoscientists (and others) can submit their photographs and videos to this repository and, since it is open access, these images can be used for free by scientists for their presentations or publications, by educators and the general public, and some images can even be used freely for commercial purposes. Photographers also retain full rights of use, as Imaggeo images are licensed and distributed by the EGU under a Creative Commons licence. Submit your photos at http://imaggeo.egu.eu/upload/.

Imaggeo on Mondays: Why does a Norwegian glacier look blue?

Imaggeo on Mondays: Why does a Norwegian glacier look blue?

This picture shows the outlet glacier Engabreen running down from the plateau of Svartisen in Norway. Svartisen ice cap comprises two glacier systems of which the Vestre (western) Svartisen is Norway’s second largest glacier. Located right at the polar circle, Svartisen covers a total of 369 km² of the Nordland region. These coastal mountains accumulate a snowpack of 5-7 m depth through the winter season, which feeds the glaciers.

Actually, Svartisen means black ice. However, the ice of the glacier tongue of Engabreen, an outlet glacier of Svartisen ice cap, looks pretty blue in the flat light of a late afternoon in August.  The ice, which is mostly free of air bubbles, transmits the blue colour more than the rest of the visible spectrum of light. Thus, by having to travel a distance of approx. 3 m through the ice body, the blue light is particularly visible.

More than the colour, it is the hydrology and the ice flow of Engabreen which are studied with attention by the Norwegian Water Resources and Energy Directorate (NVE). A tunnel system was built partly underneath the glacier in the 1990’s to collect the waters from Svartisen for hydro power production., The Svartisen Subglacial Laboratory  is located at one end of the tunnel, providing a unique opportunity for direct access to the bed of a temperate glacier. The privileged location means that sub-glacial parameters can be obtained from experiments right at the bottom of a 200 m thick ice pack.

The waters of Holandsfjord have to be crossed to visit the beautiful area of the glacier lake Svartisvatnet and Engabreen. This can be either done by boat shuttle or, as we did, by kayak [ find a magazine article about Kay’s adventure here – in German -].

 By Kay Helfricht, researcher at the Institute for Interdisciplinary Mountain Research of the Austrian Academy of Sciences, Austria

Editor’s note: this text was revised on Tuesday 25th October 2016 following comments from Terje Solbakk.

Imaggeo is the EGU’s online open access geosciences image repository. All geoscientists (and others) can submit their photographs and videos to this repository and, since it is open access, these images can be used for free by scientists for their presentations or publications, by educators and the general public, and some images can even be used freely for commercial purposes. Photographers also retain full rights of use, as Imaggeo images are licensed and distributed by the EGU under a Creative Commons licence. Submit your photos at http://imaggeo.egu.eu/upload/.

 

Imaggeo on Mondays: The glacial landscape of Yosemite

 Glacial erratic rocks . Credit: Yuval Sadeh (distributed via imaggeo.egu.eu)

Glacial erratic rocks . Credit: Yuval Sadeh (distributed via imaggeo.egu.eu)

Yosemite National Park, in California, is renowned for its beautiful and striking landscapes. So much so, this is the second time it has feature on the blog this summer. While our last post on the park focused on the ancient volcanic history of its landscape, in this post we fast forward to the Plesitocene (some 110,000 to 12,000 years ago) to discover more about how glaciers shaped Yosemite’s landscape. Indeed, it is the glacier carved landscape which has made the park so famous!

During the last ice age, the high peaks and valleys of the Sierra Nevada (of which Yosemite belongs to) were covered by ice.  A vast continental ice sheet spread across much of the United States and Canada. Local climate variations as well as the geographical position of Yosemite meant that the accumulation of ice in the region was particularly unique, and didn’t belong to the vast continental ice sheet. Nevertheless, glaciers dominated the landscape during this time and the scars left behind by their presence resulted in a range of landforms observable today: including chatter marks (gouges left in granite by moving glaciers), glacier polish (shiny patches of granite), exfoliation (layered cracking of rocks which resembles onions peeling), and many others.

As glaciers move, they accumulate debris underneath their surface. As the vast frozen rivers advance, they carry the debris, which can range from pebble-sized rocks through to house-sized boulders, along with it. As the climate in the Yosemite region began to warm as the ice age came to an end, the glaciers slowly melted. Once all the ice was gone, the rocks and boulders, known as glacial erratics, were left behind.

One of the best examples of glacial erratics can be seen at Olmstead Point, near Mt. Hoffmann, in Yosemite National Park, as photographed by Yuval Sadeh. Yuval reminisces about the moment he reached the spot where the boulders are strewn across the landscape:

“I remember walking on this extremely smooth scraped surface, watching the glacial erratics rocks which looks like a giant artist placed them gently on the bedrock. Although the glacier melted many years ago, out there on the glacier carved surface it seems that time is standing still ever since.”

Follow

Get every new post on this blog delivered to your Inbox.

Join other followers: