GeoLog

geodynamics

Imaggeo on Mondays: Lava highway in Kanaga Island

Imaggeo on Mondays: Lava highway in Kanaga Island

On a rare sunny day, Mattia Pistone (a researcher at the Smithsonian Institution in Washington DC) was able to capture this spectacular shot of Kanaga, a stratovolcano in the remote Western Aleutians, which is usually veiled by thick cloud.

The Western Aleutians form a chain of 14 large and 55 small volcanic islands, belonging to one of the most extended volcanic archipelagos on Earth (1900 km), stretching from Alaska across the northern Pacific towards the shores of Russia.

As part of a team of researchers, Mattia spent three grueling weeks in the isolated region. Being one of the most extended volcanic arc systems on Earth, the Aleutians can shed light on one of the most fundamental questions in the Earth sciences: how do continents form?

The Earth’s landmasses are made of continental crust, which is thought to be largely andesitic in composition. That could mean it is dominated by a silicon-rich rock, of magmatic origin, which is fine grained and usually light to dark grey in colour. However, basaltic magmas derived from the Earth’s upper mantle and erupted at active volcanoes contribute to chemistry of the continental crust. The fact that continental crust bears the chemical hallmarks of both suggests that the formation of new continents must somehow be linked to motion of magma and its chemistry.

Establishing the link between magma generation, transport, emplacement, and eruption can therefore significantly improve our understanding of crust-forming processes associated with plate tectonics, and, particularly, help determining the architecture and composition of the continental crust. The Alaska-Aleutian archipelago is a natural laboratory which offers a variable range of volcanic rocks. The islands present a perfect opportunity for scientists to try and understand the origin of continents.

By collecting samples of volcanic ash erupted at Kanaga and other volcanoes of the Aleutian arc, Mattia and his colleagues are currently investigating the origin of this volcanic ash. Understanding its chemistry allow the team to get a clearer idea of the conditions that were present while the magma was forming and ascending, for example, how much water and iron were present.

The team were based on the Maritime Maid research vessel, and hoped from island to island collecting samples and taking measurements of volcanic activity as part of a large research consortium called GeoPRISMS, funded by the National Science Foundation. The field work was supported by a Bell 407 helicopter and its crew.

Today’s featured image shows an andesitic lava flow erupted in 1906. The volcanic deposits were explored during the field geological mission by Mattia and the team. Kanaga last erupted in 1994. Ash from that eruption was found in the nearby island of Adak. Even at present, there is a highly active system of fumaroles at the summit of the volcano.

If you pre-register for the 2017 General Assembly (Vienna, 22 – 28 April), you can take part in our annual photo competition! From 1 February up until 1 March, every participant pre-registered for the General Assembly can submit up three original photos and one moving image related to the Earth, planetary, and space sciences in competition for free registration to next year’s General Assembly!  These can include fantastic field photos, a stunning shot of your favourite thin section, what you’ve captured out on holiday or under the electron microscope – if it’s geoscientific, it fits the bill. Find out more about how to take part at http://imaggeo.egu.eu/photo-contest/information/.

Imaggeo on Mondays: Deep in the Himalayas

Deep in the Himalayas . Credit: Yuval Sadeh (distributed via imaggeo.egu.eu).

The Himalayas: vast, formidable and home to the Earth’s highest peaks. The mountain range stretches inexorably through Indian, Bhutan, Nepal, China (Tibet) and Pakistan separating the Tibetan Plateau to the north from India’s alluvial plains to the south.

India, as we know it today, started life much further south, as an island not far off the coast of Australia. It was separated from Asia (on the Eurasian plate) by the Tethys Ocean, a vast body of water which  wrapped, almost entirely, around the supercontinent Pangea. As the supercontinent started to break up, some 200 million years ago, India began its slow (in human terms, but quite fast geologically speaking) journey north towards Asia.

Moving at speeds between 9 to 16 cm per year (for comparison, human hair grows roughly 15 cm per year), by 80 million years ago, India was located 6,400 km south of Asia. The Tethys was being slowly subducted under the Asian plate and would eventually close (disappear) all together some 30 million years later, when the Indian plate collided against Asia and the Himalayas began to uplift.

The closing and subduction of the Tethyan Ocean, followed by the collision of the two continents produced the Himalayas. The mountain range is divided into six parallel belts, each of which has distinct lithotectonic zones. They are highly complex and represent a long history of tectonic processes and deformation events.

The high peaks of Nepal and China attract a fair share of the limelight, offering thrill seeking adventurers the possibility to get close to (if not scale) the highest mountains on Earth. But lesser known areas of the Himalayas also offer a window into the geological past of the planet and breathtaking scenes for intrepid people too.

Today’s photograph features a valley deep in the Indian Himalayas, and illustrates some geological, geomorphological and other phenomena’s together with a small village that was built inside this glacier curved valley.

 

If you pre-register for the 2017 General Assembly (Vienna, 22 – 28 April), you can take part in our annual photo competition! From 1 February up until 1 March, every participant pre-registered for the General Assembly can submit up three original photos and one moving image related to the Earth, planetary, and space sciences in competition for free registration to next year’s General Assembly!  These can include fantastic field photos, a stunning shot of your favourite thin section, what you’ve captured out on holiday or under the electron microscope – if it’s geoscientific, it fits the bill. Find out more about how to take part at http://imaggeo.egu.eu/photo-contest/information/.

Imaggeo on Mondays: recreating geological processes in the lab

Imaggeo on Mondays: recreating geological processes in the lab

Many of the processes which take place on Earth happen over very long time scales, certainly when compared to the life span of a person. The same is true for geographical scale. Many of the processes which dominate how our planet behaves are difficult to visualise given the vast distances (and depths) over which they occur.

To overcome this difficulty, scientists have developed and resorted to a number of tools; from geological mapping right through to generating computer models. One such tool dates back some two centuries: analogue experiments. Initially they started off as roughly scaled experiments to test a range of hypothesis. Famously, James Hutton used analogue models to prove that the folding of originally horizontal strata is the result of lateral compression. With time they have become increasingly sophisticated, allowing researchers to replicate a vast range of conditions and environments which lead to a better understanding of how our planet works.

Today’s Imaggeo on Monday’s image, by Stephane Dominguez, a researcher Chargé de Recherche CNRS, in Montpellier, shows the final evolution stage of an analog experiment dedicated to the study of Relief Dynamics – how surface topography comes to be – and what role tectonics, erosion and sedimentation play in the formation of landscapes. In such experiments, typical scaling is 1cm = a few hundred meters and 1s = a few tens of years.

In this particular experiment “we used a specific granular material mixture (made of water saturated silica, microbeads, PVC and graphite powders, to simulate a portion of the upper terrestrial crust submitted to tectonic extension (where the crust is being stretched, such as at, but not limited to, continental rifts and divergent plate boundries),”explains Stephane.

At the same time, the research team used a rainfall system to project micro water droplets on the model surface. This causes water runoff to initiate and starts the growing reliefs to be eroded.

“We obtain a very realistic morphology that continuously evolves in response to complex interactions between surface deformation (induced by normal fault activity – caused by the stretching of the crust) and surface processes (erosion, sediment transport and deposition).”

 

References

Ranalli, G.: Experimental tectonics: from Sir James Hall to the present, Journal of Geodynamics, 32, 65-76.

Imaggeo is the EGU’s online open access geosciences image repository. All geoscientists (and others) can submit their photographs and videos to this repository and, since it is open access, these images can be used for free by scientists for their presentations or publications, by educators and the general public, and some images can even be used freely for commercial purposes. Photographers also retain full rights of use, as Imaggeo images are licensed and distributed by the EGU under a Creative Commons licence. Submit your photos at http://imaggeo.egu.eu/upload/.

Imaggeo on Mondays: The organisation of a river system

Imaggeo on Mondays: The organisation of a river system

The picture shows the Elbe Rivervalley, one of the major rivers of Central Europe. It was taken from the Bastei Bridge close to Rathen, which towers 194 meters above the Elbe River in the state of Saxony in the south-eastern Germany. This region belongs to the national park known as Saxon Switzerland. Together with the Bohemian Switzerland in the Czech Republic, the Saxon Switzerland National Park forms the Elbe Sandstone Mountains, which represents the greatest cretaceous sandstone erosion complex in Europe and is popular with tourists and climbers.

The Elbe basin covers the largest area in Germany (65.5 %) and the Czech Republic (33.7 %). The smaller parts of the basin lie in the Austria (0.6 %) and Poland (0.2 %). It starts in the northern Czech Republic at an elevation of about about 1400 meters above sea level and flows via Bohemian, Germany, and into the North Sea at Cuxhaven. Therefore, the Elbe river system connects four countries as well as large German cities such as Dresden, Wittenberg, Magdeburg and Hamburg.

The sandstone of the Elbe Mountains was formed by accumulation of sands during a marine regression – a process where previously submerged seafloor becomes exposed due to receding ocean waters – (Cretaceous sea) millions of years ago. The varying sandstone formations that make up the mountains represent variations in pressure regime, horizontal structure and fossil content. After the marine regression, the developed sandstone formations were uplifted. The uplifted sandstone formations have been shaped by subsequent chemical and physical erosion and biological processes acting on the rocks. Moreover, the water masses of the Elbe River formed the valleys and streambeds. Therefore, the current state of the landscape of the Elbe Sandstone Mountains is characterised by the changes between plains, ravines, table mountains and rocky regions with undeveloped areas of forest. Human activity also plays an important role in the shaping of the highland region’s landscape as it is affected by settlements, tourisms and climbers.

The image illustrates how the interplay between long-term processes, such as geology, tectonic history, geomorphology, climate, biology and human influence shape landscapes.

By Tatiana Feskova, researcher at the Helmholtz Centre for Environmental Research.

Imaggeo is the EGU’s online open access geosciences image repository. All geoscientists (and others) can submit their photographs and videos to this repository and, since it is open access, these images can be used for free by scientists for their presentations or publications, by educators and the general public, and some images can even be used freely for commercial purposes. Photographers also retain full rights of use, as Imaggeo images are licensed and distributed by the EGU under a Creative Commons licence. Submit your photos at http://imaggeo.egu.eu/upload/.

Follow

Get every new post on this blog delivered to your Inbox.

Join other followers: