GeoLog

Social Media

My film is ready, now what?

My film is ready, now what?

It’s no secret that at EGU we believe using film as a medium to communicate science and engage the public with research is a great tool! So much so that we organise an annual competition for early career scientists (ECS) to produce a three-minute video to share their research with the general public, as well as publishing film how-to-guides on our blog and organising film-making workshops at our General Assembly (GA).

The film-making workshops of 2014 and 2015 focused on how to make a film: from producing the script right through to aspects of editing and post-production. This year, the workshop was delivered by Stefan Ruissen, an online & cross media specialist, and centred on how scientists can raise the profile of their film work. In today’s post, we highlight some of the main points from the workshop and share Stefan’s slides with you too.

The fact that rich-media and video has grown to form an integral part of conveying a message, be it a news story, a funny meme, or capturing moments of our everyday life should not be underestimated. Harnessing the growing popularity of video when it comes to helping you tell the narrative of your research is crucial!

Video and social media

Social media channels mean that the possibilities to communicate and share the film you invested so much time in creating have multiplied. An important take-home message from the 2014 workshop was knowing your audience: whom are you producing the film for and what message do you want them to take away from it?

Knowing your audience is vitally important when getting your work out there too– where is the most likely place you’ll find your audience: Facebook, Twitter, Instagram, via a blog? Spend some time trying to work this out, both in the planning stages of film-making and once your video is ready.

Social media generates opportunities to share your film with a broad audience. Identify which channels are the best ones to reach your audience and tap into your existing networks for maximum impact.

Social media generates opportunities to share your film with a broad audience. Identify which channels are the best ones to reach your audience and tap into your existing networks for maximum impact.

And while social media generates so many opportunities to share your film, how people are consuming content online is also changing. In the past users would actively search for content they wanted to read about or watch; now a day, most content arrives at people’s doorsteps through algorithms curated by social media channels. This means that, not only is it important to get your film ‘out there’, you’ve also got to get it noticed.

So, once you’ve identified the best platforms to use, post the content and don’t forget to engage with your audience! Be sure to start a conversation and be part of it. You will most passionately tell your story, so use every opportunity to drum up further interest in your film.

Tips

  • Get noticed in on-line searches: When planning your film, think carefully about the title and once it is finished, invest time in preparing a description text and key words
  • Be prepared: Have a set of promotional materials to hand, inc. a film summary, stills from your video and a short trailer
  • YouTube: simply uploading your video is not enough. Social media 101 says your film should come complete with description, a link to further information/the film page (if available) and don’t forget a catchy preview image to hook viewers
  • Twitter: exploit your existing network, or spend time building links with relevant peers and organisations who can further your work. The same is true for hashtags – reach a bigger audience by tapping into # and using mentions
  • Facebook: Combine all your posts with stills or a trailer of your film (that’s where that preparation of promo materials comes in handy!)
  • Ask your audience: Put yourself in the shoes of your audience, how would you find new science related content? If you aren’t sure, speak to your audience, they’ll likely give you a few pointers!

Making your video isn’t the half of it: while there is no doubt that you should concentrate your efforts on planning, shooting and editing your video, save some energy to develop a strategy which will allow you to disseminate your film work effectively. For more details on how to best achieve this, why not take a look at Stefan’s presentation?

By Laura Roberts Artal, EGU Communications Officer

This blog post is based on the presentation by Stefan Ruissen at the Short Course: Scientists must film! (SC47) which took place at the 2016 EGU General Assembly in Vienna. The full presentation can be accessed here.

Revamping the EGU blog network: call for bloggers

Revamping the EGU blog network: call for bloggers

The EGU blog network is getting a make-over! Since 2013 the network blogs have enjoyed thought-provoking and engaging contributions by Simon Redfern, Dan Schillereff and Laura Roberts, Jon Tennant, as well as Will Morgan on a range of topics: from the workings of the inner Earth, through to geomorphology, palaeontology and air quality. However, the individual circumstances of the bloggers now mean that it is no longer viable for them to regularly update their blogs. As such, it is with sadness that we announce that we are saying goodbye to Atom’s Eye on the Planet, Geology Jenga, Green Tea and Velociraptors and Polluting the Internet. From the EGU, we thank Simon, Dan, Laura, Jon and Will for contributing excellent content to the blogs and wish them the very best of luck for the future.

To complete the make-over, we’d like to find new blogs to take the place of the departing network blogs. If you are an Earth, planetary or space researcher (a PhD student, an early career scientist, or a more established one) with a passion for communicating your work, we’d like to hear from you!

We currently feature blogs in international development (Geology for Global Development), geochemistry (GeoSphere), volcanology, (VolcanincDegassing) and geopolicy (Four Degrees). We’d love to receive blog proposals from fields within the Earth, planetary and space sciences we don’t yet feature. The network aims at fostering a diverse community of geoscience bloggers, sharing accurate information about geoscientific research in a language understandable not only to fellow scientists but also to the broader public. You, as an expert in your own research area, are in a better position than we are to share recent development in your area of research.

The benefits: apart from your site gaining exposure by having its posts listed on the front page of the EGU website, we will also share highlights of your work on our social media channels (Twitter, Facebook, LinkedIn, Google+, Instagram) and advertise the blog network at our General Assembly, which has over 12,000 attendees. And, of course, you’ll get to join a great community of bloggers!

With the exception of VolcanicDegassing, the network blogs are authored by early career researchers. In this call for bloggers we are particularly keen to add diversity to the network, and particularly welcome applications from more established scientists.

Having an existing blog is not a requirement for application. However, if you don’t have a blog already, we’d like you to have at least some experience of writing for a broader audience, be it as a guest blogger, or contributing to outlets such as The Conversation, for instance. In this case, let us know what you’d like your blog to be called, what topics you would cover, and link to articles you’ve published in the past.

If you’d like your blog (or blog idea) to be considered for our network, fill out this form by 8th August.

Please note that only blogs in English will be considered, as this is the EGU working language, and the language of the blog network. We particularly encourage applications from all European countries, not just English-speaking countries, but bloggers from outside Europe can also apply.

Feel free to contact the EGU Communications Officer Laura Roberts if you have any questions. In the meantime – happy blogging!

GeoSciences Column: Hazagora – will you survive the next disaster?

GeoSciences Column: Hazagora – will you survive the next disaster?

There is no better thing, on a cold and stormy winter’s evening, than to gather your friends for a night of games / board games. Fire blazing (if you have one), tasty snacks laid out and drinks poured, you are all set to indulge in a night of scheming (if you are playing battle ship), deceit (Cluedo), or even all out comedy (think Pictionary or Charades).

The main purpose of the games you are likely to enjoy, in the relaxed setting described above and in the company of your nearest and dearest, is to entertain. You might not be aware that in playing board games you are also boosting your cognitive, decision-making and social skills. Serious games exploit this notion in order to support learning and raise awareness of important issues, as Dr. Mirjam S. Glessmer previously wrote about in our GeoEd column. With this in mind, could a board game be used to raise awareness about the complexities of geohazards and disaster risk reduction management?

A team of Belgian researchers set out to test the idea by developing Hazagora: will you survive the next disaster? Its effectiveness as an educational tool, both for those living in disaster prone areas, as well as stakeholder and scientists involved in risk management activities, is discussed in a paper recently published in the EGU’s open access journal Natural Hazards and Earth System Sciences.

Playing the game

The game is set on an island, with a central volcano surrounded by forests, agricultural lands and coastal areas. Immerse yourself in the game and you’ll have the option to embody one of five characters: the mayor, the fisherman, the lumberjack, the farmer and the tour guide.  Potential locations where players can settle, with their families, road networks and wells to provide water supply, are drawn on the board game. The board is divided into different sectors which can be affected by a geohazard. The game is led by a game master, bound to follow the Hazagora guidelines.

 Setup of the game: (a) board game; (b) character cards with from left to right: the mayor, the fisherman, the lumberjack, the farmer and the tour guide; (c) resource cards: bread, water and bricks; (d) resource dice; (e) water well and food market; (f) hut (one chip with one family), house (two chips with two families), and road; (g) cost information card for building new streets, huts, and houses and buying protection cards. Taken from Mossoux, S., et al. (2016).

Setup of the game: (a) board game; (b) character cards with from left to right: the mayor, the fisherman, the lumberjack, the farmer and the tour guide; (c) resource cards: bread, water and bricks; (d) resource dice; (e) water well and food market; (f) hut (one chip with one family), house (two chips with two families), and road; (g) cost information card for building new streets, huts, and houses and buying protection cards. Taken from Mossoux, S., et al. (2016).

The outcome of a natural disaster, contrary to common reporting in the media and popular belief, is not exclusively controlled by the force of the natural hazard. The livelihood profile of each of the characters in the game is specifically chosen to highlight the important role economic, social, physical and environmental circumstances play in shaping how individuals and nations are affected by geohazards. A fisherman will inevitably be limited in his choice of settlement location, as he/she is bound to live close to the coast, while at the same time his/her occupation controls its income. On a larger scale, political and socioeconomic factors mean that victims of natural hazards in developing countries, especially Asia and Africa, are more vulnerable to geohazards when compared to residents of developed nations.

Life on the island unfolds in years, with players establishing his/her family on the land by providing shelter, bread (food) and water. Income is received each round table and can be used to a) provide for the family or b) invest in further developing their settlement by adding more housing for extra families. At any given time, and without warning, the game master can introduce a natural hazard (earthquake, tsunami, lava flow, ash fall). All players watch a video clip which illustrates the hazard and outlines the impacts based on recent disasters. The players then discuss the potential damage caused by the hazard to infrastructure, resources and people involved in the game based on factors such as their geographical location relative to the disaster, economic potential and available natural resources. The outcome is displayed on an impact table and the damaged infrastructure removed from the board. Affected families also receive no income during the following roundtable and neighbouring natural resources become contaminated. In this way, the players visually experience complex situations and are able to test new resilience strategies without having to deal with real consequences.

(a) Game session organized with citizens in Moroni (Comoros Islands). (b) Interaction among Belgian students to develop a resilient community. Taken from Mossoux, S., et al. (2016)

(a) Game session organized with citizens in Moroni (Comoros Islands). (b) Interaction among Belgian students to develop a resilient community. Taken from Mossoux, S., et al. (2016)

Players also have the opportunity to acquire protective action cards which can be used to mitigate, prepare or adapt to hazards. The cards can be used by individuals, but also be part of community actions. During a natural hazard, players can decide to use their cards, individually or as a team, to avoid (some) of the impacts caused by the geohazard. This approach stimulates learning about the risks and mitigation strategies associated with natural hazards, by allowing players to test, experience and discuss new management ideas.

The game lasts for a minimum of five years, or equivalent to three hours game time, after which the resilience of the community (which takes into account factors such as number of living families with permanent shelter and access to natural resources) is evaluated using a resilience index. Players are ranked according to their resilience index, thus generating discussion and analysis of strategies which lead to some players fearing better than others.

Following the game, do players better understand natural hazards?

To test the success of the game at raising awareness of natural hazards, the researcher’s carried out a number of game sessions. A total of 21 secondary school and university students from Belgium, as well as a further 54 students, citizens, earth scientist and risk managers from Africa took part in the sessions. Players completed questionnaires before and after the games to evaluate how their understanding of natural hazards and risk management strategies changed after having played Hazagora.

Appreciation of the game by the players (n=75). (∗) Results are significantly different between European and African players (p <0.05). Taken from Mossoux, S., et al. (2016). Click to enlarge.

Appreciation of the game by the players (n=75). (∗) Results are significantly different between European and African players (p <0.05). Taken from Mossoux, S., et al. (2016). Click to enlarge.

The questionnaires revealed that participants found the game fun to play and greatly appreciated the flexibility offered to players to come up with their own adaptation and mitigation strategies. The scientific information regarding the physical processes driving natural hazards was the main thing European players learnt from the game. In contrast, West African players highlighted the usefulness of the game to develop personal and professional mitigation plans; the learning outcomes reflecting the differing life experiences and geological situations of the participants.

Hazagora succeeds in making players more aware of the mechanisms which drive natural hazards and how communities’ vulnerabilities differed based on social-economic factors, rather than depending solely on the potency of the geohazard. By driving discussion and collaboration among players it also stimulates engagement with the importance of disaster risk reduction strategies, while at the same time developing player’s social and negotiation skills. And so, following an enjoyable afternoon of gaming, Hazagora achieves its goal and becomes a great addition to the tools already available when it comes to raising awareness of geohazards.

By Laura Roberts Artal, EGU Communications Officer.

 

References

Mossoux, S., Delcamp, A., Poppe, S., Michellier, C., Canters, F., and Kervyn, M.: Hazagora: will you survive the next disaster? – A serious game to raise awareness about geohazards and disaster risk reduction, Nat. Hazards Earth Syst. Sci., 16, 135-147, doi:10.5194/nhess-16-135-2016, 2016.

Hazagora is a non-commerical game that is available upon request – please contact the study authors for more details.

GeoTalk: A smart way to map earthquake impact

GeoTalk: A smart way to map earthquake impact

Last week at the 2016 General Assembly Sara, one of the EGU’s press assistants, had the opportunity to speak to Koen Van Noten about his research into how crowdsourcing can be used to find out more about where earthquakes have the biggest impact at the surface.

Firstly, can you tell me a little about yourself?

I did a PhD in structural geology at KULeuven and, after I finished, I started to work at the Royal Observatory of Belgium. What I do now is try to understand when people feel an earthquake, why they can feel it, how far away from the source they can feel it, if local geology affects the way people feel it and what the dynamics behind it all are.

How do you gather this information?

People can go online and fill in a ‘Did You Feel It?’ questionnaire about their experience. In the US it’s well organised because the USGS manages this system in whole of the US. In Europe we have so many institutions, so many countries, so many languages that almost every nation has its own questionnaire and sometimes there are many inquiries in only one country. This is good locally because information about a local earthquake is provided in the language of that country, but if you have a larger one that crosses all the borders of different countries then you have a problem. Earthquakes don’t stop at political borders; you have to somehow merge all the enquiries. That’s what I’m trying to do now.

European institutes that provide an online "Did You Feel the Earthquake?" inquiry. (Credit: Koen Van Noten)

European institutes that provide an online “Did You Feel the Earthquake?” inquiry. (Credit: Koen Van Noten)

There are lots of these databases around the world, how do you combine them to create something meaningful?

You first have to ask the different institutions if you can use their datasets, that’s crucial – am I allowed to work on it? And then find a method to merge all this information so that you can do science with it.

You have institutions that capture global data and also local networks. They have slightly different questions but the science behind them is very similar. The questions are quite specific, for instance “were you in a moving vehicle?” If you answer yes then of course the intensity of the earthquake has to be larger than one felt by somebody who was just standing outside doing nothing and barely felt the earthquake. You can work out that the first guy was really close to the epicentre and the other guy was probably very far, or that the earthquake wasn’t very big.

Usually intensities are shown in community maps. To merge all answers of all institutes, I avoid the inhomogeneous community maps. Instead I use 100 km2 grid cell maps and assign an intensity to every grid cell.. This makes the felt effect easy to read and allows you to plot data without giving away personal details of any people that responded. Institutes do not always provide a detailed location, but in a grid cell the precise location doesn’t matter. It’s a solution to the problem of merging databases within Europe and also globally.

Underlying geology can have a huge impact on how an earthquake is felt.  Credit: Koen Van Noten.

Underlying geology can have a huge impact on how an earthquake is felt. 2011 Goch ML 4.3 earthquake.  Credit: Koen Van Noten.

What information can you gain from using these devices?

If you make this graph for a few earthquakes, you can map the decay in shaking intensity in a certain region. I’m trying to understand how the local geology affects these kinds of maps. Somebody living on thick pile of sands, several kilometres above the hypocentre, won’t feel it because the sands will attenuate the earthquake. They are safe from it. However, if they’re directly on the bedrock, but further from the epicentre, they may still feel it because the seismic waves propagate fast through bedrock and aren’t attenuated.

What’s more, you can compare recent earthquakes with ones that happened 200 years ago at the same place. Historical seismologists map earthquake effects that happened years ago from a time when no instrumentation existed, purely based on old personal reports and journal papers. Of course the amount of data points isn’t as dense as now, but even that works.

Can questionnaires be used as a substitute for more advanced methods in areas that are poorly monitored?

Every person is a seismometer. In poorly instrumented regions it’s the perfect way to map an earthquake. The only thing it depends on is population density. For Europe it’s fine, you have a lot of cities, but you can have problems in places that aren’t so densely populated.

Can you use your method to disseminate information as well as gather it, say for education?

The more answers you get, the better the map will be. Intensity maps are easier to understand by communities and the media because they show the distribution of how people felt it, rather than a seismogram, which can be difficult to interpret.

What advice would you give to another researcher wanting to use crowd-sourced information in their research?

First get the word out. Because it’s crowd-sourced, they need to be warned that it does exist. Test your system before you go online, make sure you know what’s out there first and collaborate. Collaborating across borders is the most important thing to do.

Interview by Sara Mynott, EGU Press Assistant and PhD student at Plymouth University.

Koen presented his work at the EGU General Assembly in Vienna. Find out more about it here.

Follow

Get every new post on this blog delivered to your Inbox.

Join other followers: