Natural Hazards

Imaggeo on Mondays: Coastal erosion

Imaggeo on Mondays: Coastal erosion

Coastlines take a battering from stormy seas, gales, windy conditions and every-day wave action. The combined effect of these processes shapes coastal landscapes across the globe.

In calm weather, constructive waves deposit materials eroded elsewhere and transported along the coast line via longshore-drift, onto beaches, thus building them up. Terrestrial material, brought to beaches by rivers and the wind, also contribute.  In stormy weather, waves become destructive, eroding material away from beaches and sea cliffs.

In some areas, the removal of material far exceeds the quantity of sediments being supplied to sandy stretches, leading to coastal erosion. It is a dynamic process, with the consequences depending largely on the geomorphology of the coast.

Striking images of receding coastlines, where households once far away from a cliff edge, tumble into the sea after a storm surge, are an all too familiar consequence of the power of coastal erosion.

In sandy beaches where dunes are common, coastal erosion can be managed by the addition of vegetation. In these settings, it is not only the force of the sea which drives erosion, but also wind, as the fine, loose sand grains are easily picked-up by the breeze, especially in blustery weather.

Grasses, such as the ones pictured in this week’s featured imaggeo image, work by slowing down wind speeds across the face of the dunes and trapping and stabilising wind-blown sands. The grasses don’t directly prevent erosion, but they do allow greater accumulation of sands over short periods of time, when compared to vegetation-free dunes.

Imaggeo is the EGU’s online open access geosciences image repository. All geoscientists (and others) can submit their photographs and videos to this repository and, since it is open access, these images can be used for free by scientists for their presentations or publications, by educators and the general public, and some images can even be used freely for commercial purposes. Photographers also retain full rights of use, as Imaggeo images are licensed and distributed by the EGU under a Creative Commons licence. Submit your photos at

GeoPolicy: 8 science-based projects improving regions in the EU

GeoPolicy: 8 science-based projects improving regions in the EU

As scientists, it can sometimes be difficult to see the real-world implications of some of our research. Concepts can often seem abstract and remote when sitting in a lab or taking field measurements. But researching the Earth sciences can have profound effects on global society. Understanding how the natural world works can help protect and improve human, animal, and plant life. This month’s GeoPolicy post (part of the European Geosciences Union GeoLog Blog) highlights EU funded projects that have their foundations in the Earth sciences.

EU member states can apply for regional project funding that aims to improve living standards for the residents living within that region. Projects can be technology, medicine, environment, or social-science based. This post highlights 8 projects that have resulted from earth-science research. Scroll down to see what projects are going on in your country, or your area of science. A full list of EU funded projects can be found here and more information on the EU regional development fund can be found on their website.


Preventing coastal erosion in Southern France

Coastal erosion causes coastlines to collapse and retreat landward. This can have damaging effects on local residents, or on those who use the coast for recreational activities. In the Mediterranean, beaches are sustained by sediment supplied from river deltas. Erosion can occur when less river sediment is transported to the coasts. This can occur when there has been a decrease in the frequency of major floods, catchment reforestation, dam construction, or dredging activities1.

The EU funded a project to protect coastal regions in the South of France; an area popular for tourists and local residents alike. Amongst other initiatives, which included infrastructure changes, a dune ridge was re-established to protect the beach and coastal area.


River adaptation to fight flash floods in Spain

The Simat region, located on the East coast of Spain, near Valenciana, is often subjected to flash flooding as it is situated between mountains and the Mediterranean Sea. Flash floods caused by heavy autumn rains burst river banks and have a devastating effect on the surrounding villages.

EU funding provided both ‘soft’ and ‘hard’ flood defences for the Valenciana region. Soft river defences use natural resources and local knowledge to protect residents from flooding. A region upstream of Simet was reclaimed for flood plains and the river was widened. To complement this, a canal system (an example of a hard defence strategy) was constructed further downstream.


Energy Efficiency: Recovering heat to produce thermal energy in Greece

Increasing energy efficiency is a key objective for the European Union: there is a specific EU Directive that focuses entirely on improving energy usage. By 2020, the EU aims to have saved roughly the equivalent of 400 power stations-worth of energy2.

Florina, a city in mainland Greece, has been awarded EU funding for a project aimed to distribute unused heat energy from power stations to 23,000 local residents. Surplus heat will be piped as ‘superheated water’ to local homes and businesses. As well as improving energy efficiency, this project is expected to cut water-related greenhouse gas emissions by 88%, as hot water will no longer be heated by traditional oil and gas combustion methods.


Improving groundwater quality in Poland

Groundwater is a lifeline to supplying Europe with freshwater. Over 300 million EU citizens get their drinking water from these subsurface water deposits. Unfortunately, groundwater can become contaminated making it unfit to be consumed, and endanger aquatic and terrestrial ecosystems. This can happen when septic systems that are not connected to modern sewer systems leak bacteria, viruses, and chemicals into the environment.

An EU funded project for the Poznań region in Poland is protecting local groundwater supplies by improving wastewater treatment networks, which will benefit almost 736,000 local inhabitants. The construction of an integrated water and wastewater monitoring system helps to protect residents as well as the surrounding ecosystems.


Micro-hydropower plants in the UK and Ireland

The world needs to shift to non-carbon based energy generation to reduce greenhouse gas emissions. The EU aims to achieve 20% energy generation from renewable sources by 2020 (2012 levels stood at 11%)3. Renewable energy sources include hydropower, geothermal, wind energy, solar energy, and biomass. Hydropower is commonly generated through dam structures, where flowing water passes through a turbine. An alternative method is to take surplus electrical energy from the grid and use it to pump water to elevated ground, therefore storing it as potential energy to be used later.

A common method within water supply systems is to use pressurised pumps to transport water to the pipeline network. Excess pressure is often vented, releasing unused energy into the atmosphere. A recently funded EU project aims to create hydro-energy from these supply systems by installing micro-hydropower plants on the ventilation valves. The generated electricity can be used to reduce conventional energy consumption. The project has been funded for regions in Wales and Ireland, however it is thought this technology could be expanded across Europe and beyond.


Turning copper to gold: mining in Portugal

Raw materials, including minerals and rare-earth elements, are used in infrastructure, renewable energy resources, agriculture, and telecommunications. The vast majority of these resources are imported to the EU, and very few mineral mines are located within Europe. It is important to improve the security of supply by either increasing internal supply or reducing the need for these materials.

The Alentejo region in Portugal is located on the Iberian pyrite belt, a geological zone rich in mineral deposits. Mining has occurred for many centuries and the region currently employs over 500 people. Funds have been awarded to develop the mine’s capabilities to increase its output of copper ore, whilst continuing to meet EU environmental standards.


Adapting water management to climate change in Denmark and Germany

Greenhouse gases absorb radiated energy from the Earth and re-radiate this as heat; raising global temperatures. This results in ice caps and glaciers melting and causes rising sea levels. Low-lying countries are now experiencing greater flooding episodes and increasing storm surges (another effect of manmade climate change). The Syddanmark region in Denmark and the Schleswig-Holstein region in Germany was awarded EU funding to assess and reduce the damage new flooding has on these areas. After discussions with professionals, politicians and members of the public, it was decided to develop a hydrological model to assess the future impacts flooding would have. The model was able to highlight where dikes should be relocated and retention areas be created to reduce negative flooding impacts. Additionally, the resulting changes showed positive biodiversity effects in these new areas from the temporary flooding.


Establishing a commercial spaceport in Sweden

Space research and exploration does more than simply try to answer overarching questions about life, the solar system, and beyond. The research and development driven by space science and exploration have led to inventions that are now used to help us in our daily lives. The ESA has a portfolio of ~450 inventions, covering areas such as optics, robotics, and electrical power. The development of the so-called “second space age” is seeing private space companies contributing to research and innovation, as well as providing opportunities for more commercial space flights.

The Kiruna region, in Northern Sweden, established an international space and research ground-station over 50 years ago. The station hosts rocket and balloon launches, satellite monitoring, new space and flight systems testing, and multiple ground-based space measurements. A project has been funded to transform the Kiruna centre into a ‘fully functioning spaceport’ to develop new products, services, research, and education.


More information about EU project funding and where it is allocated can be found on the European Commission website.



1 –

2 –

3 –


Imaggeo on Mondays: Moving images – Photo Contest 2016

Since 2010, the European Geosciences Union (EGU) has been holding an annual photo competition and exhibit in association with its General Assembly and with Imaggeo – the EGU’s open access image repository.

In addition to the still photographs, imaggeo also accepts moving images – short videos – which are also a part of the annual photo contest. However, 20 or more images have to be submitted to the moving image competition for an award to be granted by the judges.

This year saw seven interesting, beautiful and informative moving images entered into the competition. Despite the entries not meeting the required number of submissions for the best moving image prize to be awarded, three were highly ranked by the photo contest judges. We showcase them in today’s imaggeo on Mondays post and hope they serves as inspiration to encourage you to take short clips for submission to the imaggeo database in the future!

Aerial footage of an explosion at Santiaguito volcano, Guatemala. Credit: Felix von Aulock (distributed via

During a flight over the Caliente dome of Santiaguito volcano to collect images for photogrammetry, this explosion happened. At this distance, you can clearly see the faults along which the explosion initiates, although the little unmanned aerial vehicle is shaken quite a bit by the blast.

Undulatus asperitus clouds over Disko Bay, West Greenland. Credit: Laurence Dyke(distributed via

Timelapse video of Undulatus asperitus clouds over Disko Bay, West Greenland. This rare formation appeared in mid-August at the tail end of a large storm system that brought strong winds and exceptional rainfall. The texture of the cloud base is caused by turbulence as the storm passed over the Greenland Ice Sheet. The status of Undulatus asperitus is currently being reviewed by the World Meteorological Organisation. If accepted, it will be the first new cloud type since 1951. Camera and settings: Sony PMW-EX1, interval recording mode, 1 fps, 1080p. Music: Tycho – A Walk.

Lahar front at Semeru volcano, Indonesia. Credit: Franck Lavigne (distributed via

Progression of the 19 January 2002 lahar front in the Curah Lengkong river, Semeru volcano, Indonesia. Channel is 25 m across. For further information, please contact me (


GeoSciences Column: Hazagora – will you survive the next disaster?

GeoSciences Column: Hazagora – will you survive the next disaster?

There is no better thing, on a cold and stormy winter’s evening, than to gather your friends for a night of games / board games. Fire blazing (if you have one), tasty snacks laid out and drinks poured, you are all set to indulge in a night of scheming (if you are playing battle ship), deceit (Cluedo), or even all out comedy (think Pictionary or Charades).

The main purpose of the games you are likely to enjoy, in the relaxed setting described above and in the company of your nearest and dearest, is to entertain. You might not be aware that in playing board games you are also boosting your cognitive, decision-making and social skills. Serious games exploit this notion in order to support learning and raise awareness of important issues, as Dr. Mirjam S. Glessmer previously wrote about in our GeoEd column. With this in mind, could a board game be used to raise awareness about the complexities of geohazards and disaster risk reduction management?

A team of Belgian researchers set out to test the idea by developing Hazagora: will you survive the next disaster? Its effectiveness as an educational tool, both for those living in disaster prone areas, as well as stakeholder and scientists involved in risk management activities, is discussed in a paper recently published in the EGU’s open access journal Natural Hazards and Earth System Sciences.

Playing the game

The game is set on an island, with a central volcano surrounded by forests, agricultural lands and coastal areas. Immerse yourself in the game and you’ll have the option to embody one of five characters: the mayor, the fisherman, the lumberjack, the farmer and the tour guide.  Potential locations where players can settle, with their families, road networks and wells to provide water supply, are drawn on the board game. The board is divided into different sectors which can be affected by a geohazard. The game is led by a game master, bound to follow the Hazagora guidelines.

 Setup of the game: (a) board game; (b) character cards with from left to right: the mayor, the fisherman, the lumberjack, the farmer and the tour guide; (c) resource cards: bread, water and bricks; (d) resource dice; (e) water well and food market; (f) hut (one chip with one family), house (two chips with two families), and road; (g) cost information card for building new streets, huts, and houses and buying protection cards. Taken from Mossoux, S., et al. (2016).

Setup of the game: (a) board game; (b) character cards with from left to right: the mayor, the fisherman, the lumberjack, the farmer and the tour guide; (c) resource cards: bread, water and bricks; (d) resource dice; (e) water well and food market; (f) hut (one chip with one family), house (two chips with two families), and road; (g) cost information card for building new streets, huts, and houses and buying protection cards. Taken from Mossoux, S., et al. (2016).

The outcome of a natural disaster, contrary to common reporting in the media and popular belief, is not exclusively controlled by the force of the natural hazard. The livelihood profile of each of the characters in the game is specifically chosen to highlight the important role economic, social, physical and environmental circumstances play in shaping how individuals and nations are affected by geohazards. A fisherman will inevitably be limited in his choice of settlement location, as he/she is bound to live close to the coast, while at the same time his/her occupation controls its income. On a larger scale, political and socioeconomic factors mean that victims of natural hazards in developing countries, especially Asia and Africa, are more vulnerable to geohazards when compared to residents of developed nations.

Life on the island unfolds in years, with players establishing his/her family on the land by providing shelter, bread (food) and water. Income is received each round table and can be used to a) provide for the family or b) invest in further developing their settlement by adding more housing for extra families. At any given time, and without warning, the game master can introduce a natural hazard (earthquake, tsunami, lava flow, ash fall). All players watch a video clip which illustrates the hazard and outlines the impacts based on recent disasters. The players then discuss the potential damage caused by the hazard to infrastructure, resources and people involved in the game based on factors such as their geographical location relative to the disaster, economic potential and available natural resources. The outcome is displayed on an impact table and the damaged infrastructure removed from the board. Affected families also receive no income during the following roundtable and neighbouring natural resources become contaminated. In this way, the players visually experience complex situations and are able to test new resilience strategies without having to deal with real consequences.

(a) Game session organized with citizens in Moroni (Comoros Islands). (b) Interaction among Belgian students to develop a resilient community. Taken from Mossoux, S., et al. (2016)

(a) Game session organized with citizens in Moroni (Comoros Islands). (b) Interaction among Belgian students to develop a resilient community. Taken from Mossoux, S., et al. (2016)

Players also have the opportunity to acquire protective action cards which can be used to mitigate, prepare or adapt to hazards. The cards can be used by individuals, but also be part of community actions. During a natural hazard, players can decide to use their cards, individually or as a team, to avoid (some) of the impacts caused by the geohazard. This approach stimulates learning about the risks and mitigation strategies associated with natural hazards, by allowing players to test, experience and discuss new management ideas.

The game lasts for a minimum of five years, or equivalent to three hours game time, after which the resilience of the community (which takes into account factors such as number of living families with permanent shelter and access to natural resources) is evaluated using a resilience index. Players are ranked according to their resilience index, thus generating discussion and analysis of strategies which lead to some players fearing better than others.

Following the game, do players better understand natural hazards?

To test the success of the game at raising awareness of natural hazards, the researcher’s carried out a number of game sessions. A total of 21 secondary school and university students from Belgium, as well as a further 54 students, citizens, earth scientist and risk managers from Africa took part in the sessions. Players completed questionnaires before and after the games to evaluate how their understanding of natural hazards and risk management strategies changed after having played Hazagora.

Appreciation of the game by the players (n=75). (∗) Results are significantly different between European and African players (p <0.05). Taken from Mossoux, S., et al. (2016). Click to enlarge.

Appreciation of the game by the players (n=75). (∗) Results are significantly different between European and African players (p <0.05). Taken from Mossoux, S., et al. (2016). Click to enlarge.

The questionnaires revealed that participants found the game fun to play and greatly appreciated the flexibility offered to players to come up with their own adaptation and mitigation strategies. The scientific information regarding the physical processes driving natural hazards was the main thing European players learnt from the game. In contrast, West African players highlighted the usefulness of the game to develop personal and professional mitigation plans; the learning outcomes reflecting the differing life experiences and geological situations of the participants.

Hazagora succeeds in making players more aware of the mechanisms which drive natural hazards and how communities’ vulnerabilities differed based on social-economic factors, rather than depending solely on the potency of the geohazard. By driving discussion and collaboration among players it also stimulates engagement with the importance of disaster risk reduction strategies, while at the same time developing player’s social and negotiation skills. And so, following an enjoyable afternoon of gaming, Hazagora achieves its goal and becomes a great addition to the tools already available when it comes to raising awareness of geohazards.

By Laura Roberts Artal, EGU Communications Officer.



Mossoux, S., Delcamp, A., Poppe, S., Michellier, C., Canters, F., and Kervyn, M.: Hazagora: will you survive the next disaster? – A serious game to raise awareness about geohazards and disaster risk reduction, Nat. Hazards Earth Syst. Sci., 16, 135-147, doi:10.5194/nhess-16-135-2016, 2016.

Hazagora is a non-commerical game that is available upon request – please contact the study authors for more details.


Get every new post on this blog delivered to your Inbox.

Join other followers: