GeoLog

Natural Hazards

GeoSciences Column: Mapping floods with social media

GeoSciences Column: Mapping floods with social media

Picture this: you are on your commute home, smartphone or tablet in hand, surfing the internet. You might quickly catch up on the latest news, check in with your friend’s on Facebook, or take to Twitter to share a morsel of information with your followers.

This scenario is common in the modern era of technology. No doubt we are all guilty of indulging in a serious session of internet navigation every now and then (and nothing wrong with that!). But what if your online persona could also make a contribution to better natural disaster management?

One of the many challenges during, and in the immediate aftermath of, natural disasters is being able to provide local populations with timely and reliable information about the extent of damage and/or disruption expected. Flooding events are a prime example: minimising and managing the financial, human and emotional cost of floods is key for researchers, local communities, policy makers and authorities alike.

Contributing to this effort, a team of German researchers have designed a tool which harnesses our desire to share snippets of our lives via social media to support the creation of rapid inundation maps during flooding events. The research was recently published in the EGU open access journal, Natural Hazards and Earth System Sciences.

Currently, measurements of flood water heights made by river gauges, hydrodynamic-numerical models and remote sensing data – such as before and after images acquired by satellites – are used to create rapid response flood maps. Despite their successful and wide-spread use, they are not without limitations.  River gauges only allow for narrow point information on water heights during a flood and require detailed topographical data to be validated. Hydronamic-numerical models aren’t very flexible: it is difficult to build unforeseen incidents into them (e.g. a dike breach). Remote sensing techniques have limitations when it comes to providing real time information; it can take up to 48 hours for the images to be delivered and processed before they can be used.

The study authors argue that eyewitness information about flooding events shared via social media can fill in some of the gaps. Using quantitative data, such as geographical location and flood water height, held in images shared via Twitter and Flickr, can provide information to make more detailed and accurate flood maps in almost real-time. The researchers put the theory to the test for the June 2013 Dresden floods.

The city of Dresden, with its 800,000 inhabitants, sits on the banks of the River Elbe, known for its long history of flooding. This means the city’s population is more aware of the hazard and, being an urban area, likely has a large number of social media users, making it a good case study candidate.

Location of useful photos retrieved with PostDistiller and inundation depths estimates. (Photos by Denny Tumlirsch (@Flitz- patrick), @ubahnverleih, Sven Wernicke (@SvenWernicke) and Leo Käßner (@leokaesner). Taken from J. Fohringer et al. (2016))

Location of useful photos retrieved with PostDistiller and inundation depths estimates. (Photos by Denny Tumlirsch (@Flitz-patrick), @ubahnverleih, Sven Wernicke (@SvenWernicke) and Leo Käßner (@leokaesner). For instance, photos 1 and 2 show inundated roads but a dry sidewalk. This context en- ables the analyst to estimate inundation depth in the order of approximately 5 cm Taken from J. Fohringer et al. (2016))

The research team created an inundation map using only information from photos filtered from Twitter and Flickr. To collate the flood data from social media, the team designed a computer programme. In the first instance a search for key words (in both English and German) related to floods was ran: “Hochwasser”, “Flut”, “Flood”, “inundation”, to name a few. The results were then filtered by the time frame of interest (from May 5th to 21st June 2013) as well as the geolocation of the posts. This yielded a total of 84 posts from which five inundation depths were derived (see the figure caption for details of how the team achieved this), in the space of no more than four hours. The depths calculated were then used to create the inundation map.

To test the robustness of the map, the team created a second map relying only on online data acquired from the Dresden river gauge. Comparing the two maps shows that the social media created map overestimates inundation height by decimetres as well as the geographical extent of the flooding. Despite that, the study authors argue that the errors are acceptable when it comes to providing rapid inundation maps, particularly in situations when no other information is available.

Inundation maps and inundation depths derived from online water level observations (a) and social media content (b) ; inundated area derived from the reference remote sensing flood footprint (c) ; and differences between inundation depths for overlapping areas in scenarios (a) and (b) (panel d ). J. Fohringer et al. (2016))

Inundation maps and inundation depths derived from online water level observations (a) and social media content (b); inundated area derived from the reference remote sensing flood footprint (c); and differences between inundation depths for overlapping areas in scenarios (a) and (b) (panel d). J. Fohringer et al. (2016))

The case study also highlighted some of the method’s shortcomings. It will be important to improve the vertical and horizontal accuracy of the social media created maps by supplementing them with more detailed topographical terrain data. The current method of acquiring data via social media is relatively passive and relies on users sharing images from a flooding event. Crowdsourcing data, where citizens are actively encouraged to share images, would improve the reliability of the data as well as the spatial coverage.

So when you next take a selfie or capture a stunning landscape to share on social media, who knows, the data held in your images and geolocation could have even more value than you might have originally thought!

By Laura Roberts Artal, EGU Communications Officer

 

 

 References

Fohringer, J., Dransch, D., Kreibich, H., and Schröter, K.: Social media as an information source for rapid flood inundation mapping, Nat. Hazards Earth Syst. Sci., 15, 2725-2738, doi:10.5194/nhess-15-2725-2015, 2015.

Rimkus, S. et al.  A Century of UK Flood Losses (conference abstract) Geophysical Research Abstracts Vol. 18, EGU2016-11905, 2016, EGU General Assembly 2016

Trejo Rangel, M.A., et al. How Can Flood Affect the Real Estate Market? (conference abstract) Geophysical Research Abstracts, Vol. 18, EGU2016-8977, 2016, EGU General Assembly 2016

Imaggeo on Mondays: Fire Watch Constellation

Imaggeo on Mondays: Fire Watch Constellation

Wild fires: raging walls of flames, capable of burning down swathes of pristine, sometimes protected and ancient, landscapes have been causing havoc around the globe. Managing and controlling them is no easy task; they can unexpectedly change their course with the wind and jump across rivers, roads and man-made fire breaks.

The significant threat they pose, and damage they can cause, to valuable ecosystems worldwide has been recently evidenced by the destruction of 180 million year old forests in Tasmanian; so unique they are a designated United Nations World Heritage wilderness land. Not only that, wildfires can have sever effects on air quality, directly impacting human health, while at the same time contributing hefty amounts of greenhouse gases to the atmosphere. As recently as the end of last year (2015), forest fires in Indonesia were hailed as a ‘crime against humanity‘, after causing over 500,000 cases of acute respiratory tract infections.

This week’s Imaggeo on Mondays photograph highlights an emerging field of research where scientists are developing new methods to try and better understand the past impact of wildfires and how they contributed (or not) to climate change.

Of his image, Egle Rackauskaite writes: This composite shows a constellation of combined visual and infrared imaging of a smouldering combustion front spreading radially over a thin sample of dry peat. The central watch is created by a series of twelve wedges. Each wedge is extracted from a photo taken every 5 min from an elevated view looking down into the sample during the one-hour lab experiment. The circular peat sample (D=22 cm) was ignited on the centre by an electrical heater. The average radial spread rate was 10 cm/h and the peak temperature 600°C. The top figures show the virgin peat (left) and the final residue (right). The bottom figures show the wedges in visual (left) and infrared (right) imaging. Smouldering combustion is the driving phenomenon of wildfires in peatlands, like those causing haze episodes in southeast Asia and Northeast Europe. These are the largest fires on Earth and an extensive source of greenhouse gases, but poorly studied. Our experiments help to understand this emerging research topic in climate-change mitigation by characterizing the dynamics of ignition, spread and extinction, and also measure the yield of carbon emissions.

If you pre-register for the 2016 General Assembly (Vienna, 17 – 22 April), you can take part in our annual photo competition! From 1 February up until 1 March, every participant pre-registered for the General Assembly can submit up three original photos and one moving image related to the Earth, planetary, and space sciences in competition for free registration to next year’s General Assembly!  These can include fantastic field photos, a stunning shot of your favourite thin section, what you’ve captured out on holiday or under the electron microscope – if it’s geoscientific, it fits the bill. Find out more about how to take part at http://imaggeo.egu.eu/photo-contest/information/.

 

Geosciences Column: An international effort to understand the hazard risk posed by Nepal’s 2015 Gorkha earthquake

Geosciences Column: An international effort to understand the hazard risk posed by Nepal’s 2015 Gorkha earthquake

Nine months ago the ground in Nepal shook, and it shook hard: on April 25th 2015 the M7.8 Gorkha earthquake struck and was followed by some 250 aftershocks, five of which were greater than M 6.0. The devastation left behind in the aftermath of such an event, and how to coordinate disaster-relief efforts in a vast, mountainous region, is difficult to imagine. Yet, this December at the 2015 AGU Fall Meeting, I came a little closer.

At the meeting I attended the press conference ‘Future Himalayan seismic hazards: Insights from earthquakes in Nepal’. It focused, mainly, on the outcomes of two research papers published in Science on the role that both past and the recent Gorkha earthquakes can play in triggering quake-induce landslides. The findings of the research were covered widely by the media.

I was struck, not only by those findings, but by the personal accounts of the scientists who’d seen the devastation left behind by the earthquake. But more still, what really caught my attention, was the multinational effort and collaboration that went into the research.

Before-and-after photographs of Nepal’s Langtang Valley showing the near-complete destruction of Langtang village due to a massive landslide caused by the 2015 Gorkha earthquake. Photos from 2012 (pre-quake) and 2015 (post-quake) by David Breashears/GlacierWorks. Distributed via NASA Goddard on Flickr.

Before-and-after photographs of Nepal’s Langtang Valley showing the near-complete destruction of Langtang village due to a massive landslide caused by the 2015 Gorkha earthquake. Photos from 2012 (pre-quake) and 2015 (post-quake) by David Breashears/GlacierWorks. Distributed via
NASA Goddard on Flickr. Click to enlarge.

After the press conference I met with Dalia Kirschbaum of the NASA Goddard Space Flight Centre and Dan Shugar of the University of Washington Tacoma, two of the co-authors of the 2015 Gorkha earthquake paper, to discuss this aspect of the research in more detail.

Given the vast geographical area over which the Gorkha earthquake had caused damage, as well as the hard-to-access mountainous terrain, the team used satellite imagery to map earthquake-induced landslides. They also monitored the stability of the region’s moraine dammed glacial lakes, prone to outburst following earthquakes due to the failure of moraine damns.

When a large scale disaster occurs the International Charter on Space and Major Disasters allows for the dedicated collection of space data to contribute towards humanitarian and charitable efforts in areas affected by natural or man-made disasters. Following the Gorkha earthquake, Nepal called for the activation of the charter.

Following Nepal activating the Charter, satellite imagery was provided by NASA, the Japan Aerospace Exploration Agency, the China Space Agency, as well as private organisations such as DigitalGlobe, to name but a few.

This project was “different to what we had seen in the past in terms of international collaboration,” Dalia told me during our conversation.

A group of nine nations, coordinated by the Global Land Ice Measurements from Space, began assessing the imagery provided and mapping the earthquake-induced geohazards, including landslides. In the first instance the data was used to identify potentially hazardous situations where communities and infrastructure might be at risk. This was followed by an effort to build a landslide inventory, which could provide information about the distribution, character, geomorphological, lithological and tectonic controls which govern the occurrence of earthquake triggered landslides.

An international volunteer geohazards team mapped landslides triggered by the 2015 Nepal Gorkha earthquake and its aftershocks. The landslides were mapped using a range of different satellite products. Credit: Landslide mapping team/NASA-GSFC. Distributed via NASA Goddard on Flickr.

An international volunteer geohazards team mapped landslides triggered by the 2015 Nepal Gorkha earthquake and its aftershocks. The landslides were mapped using a range of different satellite products. Credit: Landslide mapping team/NASA-GSFC. Distributed via NASA Goddard on Flickr.

Simultaneously, scientists from the British Geological Survey and Durham University also began to build a database of known geohazards in the region. The data was shared between the two working groups.

“For no other major earthquakes have landslide inventories come from such a diverse range of datasets and organisations,” explained Dalia.

Neither had emergency remote sensing been undertaken so quickly.

I was interested in why the Nepal earthquakes in particular had inspired this, so far unique – but hopefully not the last – diverse international collaboration to better understand earthquake-induced geohazards.

Dan Shugar thinks it was because so many geoscientists have a deep personal connection with Nepal. Durham University scientists, for example, take geology students to the region on an annual field trip.

“Everybody loves Nepal! The nature of the country really lent itself to people wanting to help,” he added.

Field visit identifies light damage at Tsho (lake) Rolpa. Post-earthquake image of Tsho Rolpa appears identical to its appearance shortly before the earthquake. Two areas of fractures —believed formed by the May 12 2015 aftershock— were observed on the engineered part of the end moraine from a helicopter during an inspection undertaken by the U.S. Geological Survey at Tsho Rolpa. Photos from 27 May by Brian Collins/USGS, courtesy of USAID-OFDA (Office of Foreign Disaster Aid). Distributed via NASA Goddard on Flickr.

Field visit identifies light damage at Tsho (lake) Rolpa. Post-earthquake image of Tsho Rolpa appears identical to its appearance shortly before the earthquake. Two areas of fractures —believed formed by the May 12 2015 aftershock— were observed on the engineered part of the end moraine from a helicopter during an inspection undertaken by the U.S. Geological Survey at Tsho Rolpa. Photos from 27 May by Brian Collins/USGS, courtesy of USAID-OFDA (Office of Foreign Disaster Aid). Distributed via
NASA Goddard on Flickr.

For many, including Dan, it rose from a need to contribute to the humanitarian effort. Despite having trained as a geomorphologist and actively researching Alpine natural hazards, prior to the Gorkha earthquake he’d not had the opportunity to apply his knowledge and expertise to help others. It allowed him to offer help in the same way a medic might do by flying out to the scene of a disaster and offering medical expertise and treating the injured.

For Dalia, the positive impact made in the Nepal crisis by the international effort of quickly gathering, sharing and interpreting Earth observation data, was an important driver in keeping her linked to the project.

This effort is now seeing a life beyond the Nepal earthquakes. NASA satellites had previously been involved in the acquisition of data sets to aid in humanitarian crisis, such as in the aftermath of hurricanes. The successful approach taken during the Nepal earthquakes will now help coalesce NASA’s disaster programme and how NASA will respond to natural hazards in the future. It is leading to a more formalised disaster response programme.

The lessons learnt from the Nepal earthquake are ongoing, with much still being done in the scientific realms to better understand the hazards posed by the tectonics of the region, and associated geohazards triggered by the earthquakes. Many of the international collaborations fostered during the crisis are ongoing and will hopefully mean an improved response to future natural hazards in the region.

By Laura Roberts Artal, EGU Communications Officer. With many thanks to Dalia Kirschbaum and Dan Shugar.

References

Schwanghart, W., Bernhart, A., Stolle, A., et. al.,: Repeated catastrophic valley infill following medieval earthquakes in the Nepal Himalaya, Science, vol. 351, 6269, 147-150, doi: 10.1126/science.aac9865, 2016.

Kargel, J. S., Leonard, G. J., Shugar, D.H., et al.,: Geomorphic and geologic controls of geohazards induced by Nepal’s 2015 Gorkha earthquake, Science,vol. 351, 6269, 147-150, doi: 10.1126/science.aac8353, 2016.

Unfortunately, some of the publications referenced in this post are close access – but other links included in this post, as well as the post itself, hopefully convey the overall message of the research.

Imaggeo on Mondays: The retreating glaciers of the Svaneti Range, Georgia

Imaggeo on Mondays: The retreating glaciers of the Svaneti Range, Georgia

Today’s Imaggeo on Mondays picture shows the central section of the Svaneti Range, located in the Svaneti Region – a historic province of northwestern Georgia. The range is the second biggest range formed by the modern glaciation on the southern slopes of the Georgian Caucasus Mountains. In today’s post, Levan Tielidze, a researcher at Ivane Javakhishvili Tbilisi State University, writes about the ice capped peaks of these high mountains and highlights the precarious balance of this cryospheric system.

Svaneti range is approximately 100 km long and is distinguished by the height of its relief, as well as by the fact that the area covered by glaciers in the region exceeds that covered elsewhere in the southern slopes of the Georgian Caucasus.These features define the range and lead it to be divided into three sections: eastern, central (shown in this picture) and western. The eastern and western sections are lower in altitude than the central region and modern ice cover cannot be found there, with the exception of Mount Dadiashi which stands at 3535 m asl.

However, glaciers do cap the peaks in the central areas of the range, and can be found between the sections of Lasili and Leshnuri. Here is where you’ll find the highest peak of the mountain range: Laila (Laila-Lehli) -4009 m asl.

The glaciers in this region are retreating and losing volume. Data from the 1960s indicated that glaciers in the range numbered up to 48 and covered an area of approximately 27.76 km2 , equivalent to the size of just over 2500 football pitches. By 2014 the area covered by the glaciers in the region had shrunk by 27.5% and now only covers approximately 20.13 km2.

Some of the largest glaciers of the northern slopes of the range are formed on Laila peak, which itself is covered by a glacier cap. Among these glaciers the largest is Eastern Laila, located in the Khumpreri River basin. The glacier is formed of two ice streams which flow from separate valleys. In 1960 the glacier area was  close to 5.96 km2; its terminus ended at a height of 2300 meters asl. By 2014 the eastern Laila’s area decreased to 3.55 km2 and has retreated to an altitude of 2640 m asl. The total glacier length is now approximately 4.52 kilometers.

The glaciers are an important source of water for agricultural production in Georgia, and runoff in large glacially-fed rivers (Kodori, Enguri, Rioni, Tskhenistskali, Nenskra) supplies several hydroelectric power stations. In addition, glacier outburst floods and related debris flows are a significant hazard in Georgia and in the Caucasus. Future trends in glacier change are thus a topic of considerable interest to the region.

By Levan Tielidze, Institute of Geography, Tbilisi State University, Georgia

If you pre-register for the 2016 General Assembly (Vienna, 17 – 22 April), you can take part in our annual photo competition! From 1 February up until 1 March, every participant pre-registered for the General Assembly can submit up three original photos and one moving image related to the Earth, planetary, and space sciences in competition for free registration to next year’s General Assembly!  These can include fantastic field photos, a stunning shot of your favourite thin section, what you’ve captured out on holiday or under the electron microscope – if it’s geoscientific, it fits the bill. Find out more about how to take part at http://imaggeo.egu.eu/photo-contest/information/.

Follow

Get every new post on this blog delivered to your Inbox.

Join other followers: