GeoLog

Earth Magnetism and Rock Physics

May GeoRoundUp: the best of the Earth sciences from around the web

May GeoRoundUp: the best of the Earth sciences from around the web

Drawing inspiration from popular stories on our social media channels, as well as  unique and quirky research news, this monthly column aims to bring you the best of the Earth and planetary sciences from around the web.

Major Story

In the last couple of weeks of May, the news world was abuzz with the possibility of Donald Trump withdrawing from the Paris Agreement. Though the announcement actually came on June 1st, we’ve chosen to feature it in this round-up as it’s so timely and has dominated headlines throughout May and June.

In withdrawing from the agreement, the United States becomes only one of three countries in rejecting the accord, as this map shows. The implications of the U.S joining Syria and Nicaragua (though, to be clear, their reasons for not signing are hugely different to those which have motivated the U.S withdrawal) in dismissing the landmark agreement have been widely covered in the media.

President Trump’s announcement has drawn widespread condemnation across the financial, political and environmental sectors. Elon Musk, Tesla and SpaceX CEO, was one of many in the business sector to express their criticism of the President’s decision. In response to the announcement, Musk tweeted he was standing down from his duties as adviser to a number of White House councils. While in early May, thirty business CEOs  wrote an open letter published in the Wall Street Journal to express their “strong support for the U.S. remaining in the Paris Climate Agreement.”

In a defiant move, U.S. States (including California, New York and Vermont), cities and business plan to come together to continue to work towards meeting the targets and plans set out by the Paris Agreement. The group, coordinated by former New York City mayor Mark Bloomberg, aims to negotiate with the United Nations to have its contributions accepted to the Agreement alongside those of signatory nations.

“We’re going to do everything America would have done if it had stayed committed,” Bloomberg, said in an interview.

Scientist and learned societies have also been vocal in expressing their criticism of the White House decision. Both Nature and Science collected reactions from researchers around the globe. The EGU, as well as the American Geophysical Union, and many in the broader research community oppose the U.S. President’s decision.

“The EGU is committed to supporting the integrity of its scientific community and the science that it undertakes,” said the EGU’s President, Jonathan Bamber.

For an in-depth round-up of the global reaction take a look at this resource.

What you might have missed

This month’s links you might have missed take us on a journey through the Earth. Let’s start deep in the planet’s interior.

The core generates the Earth’s magnetic field. Periodically, the magnetic field reverses, but what caused it to do so? Well, there are several, competing, ideas which might explain why. Recently, one of them gained a bit more traction. By studying the seismic signals from powerful earthquakes, researchers at the University of Oxford found that regions on top of the Earth’s core sometimes behave like a giant lava lamp. It turns out that blobs of rock periodically rise and fall deep inside our planet. This could affect the magnetic field and cause it to flip.

Meanwhile, at the planet’s surface, the Earth’s outer solid layer (the crust) and upper layer of the molten mantle,  are broken up into a jigsaw of moving plates which pull apart and collide, generating earthquakes, driving volcanic eruptions and raising mountains. But the jury is still out as to when and how plate tectonics started. The Earth is so efficient at recycling and generating new crustal material, through plate tectonics, that only a limited record of very old rocks remains making it very hard to decipher the mystery. A recently published article explores what we know and what yet remains to be discovered when it comes to plate tectonics.

Tectonic plate boundaries. By Jose F. Vigil. USGS [Public domain], distributed by Wikimedia Commons.

Oil, gas, water, metal ores: these are the resources that spring to mind when thinking of commodities which fuel our daily lives. However, there are many others we use regularly, far more often than we realise or care to admit, but which we take for granted. Sand is one of them. In the industrial world it is know as ‘aggregate’ and it is the second most exploited natural resource after water. It is running out. A 2014 United Nations Environment Programme report highlighted that the “mining of sand and gravel greatly exceeds natural renewal rates”.

Links we liked

  • Earth Art takes a whole new meaning when viewed from space. This collection of photographs of natural parks as seen from above is pretty special.
  • This round-up is usually reserved for non-EGU related news stories, but given these interviews with female geoscientists featured in our second most popular tweet of the month, it is definitely worth a share: Conversations on being a women in geoscience – perspectives on what being a female in the Earth sciences.
  • We’ve shared these previously, but they are so great, we thought we’d highlight them again! Jill Pelto, a scientist studying the Antarctic Ice Sheet and an artist, uses data in her watercolous to communicate information about extreme environmental issues to a broad audience.

The EGU story

Temperatures in the Arctic are increasing twice as fast as in the rest of the globe, while the Antarctic is warming at a much slower rate. A new study published in Earth System Dynamics, an EGU open access journal, shows that land height could be a “game changer” when it comes to explaining why temperatures are rising at such different rates in the two regions. Read the full press release for all the details, or check out the brief explainer video, which you can also watch on our YouTube channel.

 

And don’t forget! To stay abreast of all the EGU’s events and activities, from highlighting papers published in our open access journals to providing news relating to EGU’s scientific divisions and meetings, including the General Assembly, subscribe to receive our monthly newsletter.

Imaggeo on Mondays: A lava layer cake

Imaggeo on Mondays: A lava layer cake

Brekkuselslækur, a small river, carves its way across Iceland’s ancient volcanic landscape. At Hengifoss, Iceland’s third-highest waterfall, it tumbles fiercely down thick, dark layers of lavas erupted from volcanoes some 18 to 2.58 million years ago, during a period of geological time known as the Tertiary.

Eruptions are rarely continuous; during hiatuses in the extrusion of lavas, ash is able to settle atop the smoldering layers. If the pauses are long enough and the conditions just right (a warm and humid climate is needed) the ashes, through the addition of clay and iron minerals, slowly turn to soil . When new lavas are layered over the top of the ash-rich soils, a chemical reaction takes place between the iron trapped in the soil and the oxygen transported by the lavas, to form iron oxide. In essence, the soils rust and turn a distinctive red colour.

As the process is repeated time and time again, layers of alternating black lavas and red soils are built up to form a giant ‘mille feuilles’ cake.

In the summer months, tourists flock to this popular site. An unspoilt view of the 188m high torrent means an early morning hike to beat the crowds. For a bird’s eye view of Hengifoss, the adventurous can even scarmble to the cliff tops too.

Imaggeo is the EGU’s online open access geosciences image repository. All geoscientists (and others) can submit their photographs and videos to this repository and, since it is open access, these images can be used for free by scientists for their presentations or publications, by educators and the general public, and some images can even be used freely for commercial purposes. Photographers also retain full rights of use, as Imaggeo images are licensed and distributed by the EGU under a Creative Commons licence. Submit your photos at http://imaggeo.egu.eu/upload/.

Imaggeo on Mondays: In the belly of the beast

In the belly of the beast . Credit: Alexandra Kushnir (distributed via imaggeo.egu.eu)

Conducting research inside a volcanic crater is a pretty amazing scientific opportunity, but calling that crater home for a week might just be a volcanologist’s dream come true, as Alexandra postdoctoral researcher at the Institut de Physique du Globe de Strasbourg, describes in this week’s Imaggeo on Mondays.

This picture was taken from inside the crater of Mount St Helens, a stratovolcano in Washington State (USA). This particular volcano was made famous by its devastating explosive eruption in 1980, which was triggered by a landslide that removed most of the volcano’s northern flank.

Between 2004 and 2008 Mount St Helens experienced another type of eruption – this time effusive (where lava flowed out of the volcano without any accompanying explosions). Effusive eruptions produce lava flows that can be runny (low-viscosity) like the flows at Kilauea (Hawaii) or much thicker (high viscosity) like at Mount St Helens. Typically, high viscosity lavas can’t travel very far, so they begin to clump up in and around the volcano’s crater forming dome-like structures.  Sometimes, however, the erupting lava can be so rigid that it juts out of the volcano as a column of rock, known as a spine.

The 2004 to 2008 eruption at Mount St Helens saw the extrusion of a series of seven of these spines. At the peak of the eruption, up to 11 meters of rock were extruded per day. As these columns were pushed up and out of the volcanic conduit – the vertical pipe up which magma moves from depth to the surface – they began to roll over, evoking images of whales surfacing for air.

‘Whaleback’ spines are striking examples of exhumed fault surfaces – as these cylinders of rock are pushed out of the volcano their sides grind against the inside of the volcanic conduit in much the same way two sides of a fault zone move and grind past each other. These ground surfaces can provide scientists with a wealth of information about how lava is extruded during eruption. However, spines are generally unstable and tend to collapse after eruption making it difficult to characterize their outer surfaces in detail and, most importantly, safely.

Luckily, Mount St Helens provided an opportunity for a group of researchers to go into a volcanic crater and characterise these fault surfaces. While not all of the spines survived, portions of at least three spines were left intact and could be safely accessed for detailed structural analysis. These spines were encased in fault gouge – an unconsolidated layer of rock that forms when two sides of a fault zone move against one another – that was imprinted with striations running parallel to the direction of extrusion, known as slickensides. These features can give researchers information about how strain is accommodated in the volcanic conduit. The geologist in the photo (Betsy Friedlander, MSc) is measuring the dimensions and orientations of slickensides on the outer carapace of one of the spines; the southern portion of the crater wall can be seen in the background.

Volcanic craters are inherently changeable places and conducting a multi-day field campaign inside one requires a significant amount of planning and the implementation of rigorous safety protocols. But above all else, this type of research campaign requires an acquiescent mountain.

Because a large part of Mount St Helens had been excavated during the 1980 eruption, finding a safe field base inside the crater was possible. Since the 2004-2008 deposits were relatively unstable, the science team set up camp on the more stable 1980-1986 dome away from areas susceptible to rock falls and made the daily trek up the eastern lobe of the Crater Glacier to the 2004-2008 deposits.

Besides being convenient, this route also provides a spectacular tableau of the volcano’s inner structure with its oxidized reds and sulfurous yellows. The punctual peal of rock fall is a reminder of the inherent instability of a volcanic edifice, and the peculiar mix of cold glacier, razor sharp volcanic rock, and hot magmatic steam is otherworldly. That is, until an errant bee shows up to check out your dinner.

By Alexandra Kushnir, postdoctoral researcher at the Institut de Physique du Globe de Strasbourg, France.

This photo was taken in 2010 while A. Kushnir was a Masters student at the University of British Columbia and acting as a field assistant on the Mount St Helens project.

Imaggeo is the EGU’s online open access geosciences image repository. All geoscientists (and others) can submit their photographs and videos to this repository and, since it is open access, these images can be used for free by scientists for their presentations or publications, by educators and the general public, and some images can even be used freely for commercial purposes. Photographers also retain full rights of use, as Imaggeo images are licensed and distributed by the EGU under a Creative Commons licence. Submit your photos at http://imaggeo.egu.eu/upload/.

 

Imaggeo on Mondays: Lava highway in Kanaga Island

Imaggeo on Mondays: Lava highway in Kanaga Island

On a rare sunny day, Mattia Pistone (a researcher at the Smithsonian Institution in Washington DC) was able to capture this spectacular shot of Kanaga, a stratovolcano in the remote Western Aleutians, which is usually veiled by thick cloud.

The Western Aleutians form a chain of 14 large and 55 small volcanic islands, belonging to one of the most extended volcanic archipelagos on Earth (1900 km), stretching from Alaska across the northern Pacific towards the shores of Russia.

As part of a team of researchers, Mattia spent three grueling weeks in the isolated region. Being one of the most extended volcanic arc systems on Earth, the Aleutians can shed light on one of the most fundamental questions in the Earth sciences: how do continents form?

The Earth’s landmasses are made of continental crust, which is thought to be largely andesitic in composition. That could mean it is dominated by a silicon-rich rock, of magmatic origin, which is fine grained and usually light to dark grey in colour. However, basaltic magmas derived from the Earth’s upper mantle and erupted at active volcanoes contribute to chemistry of the continental crust. The fact that continental crust bears the chemical hallmarks of both suggests that the formation of new continents must somehow be linked to motion of magma and its chemistry.

Establishing the link between magma generation, transport, emplacement, and eruption can therefore significantly improve our understanding of crust-forming processes associated with plate tectonics, and, particularly, help determining the architecture and composition of the continental crust. The Alaska-Aleutian archipelago is a natural laboratory which offers a variable range of volcanic rocks. The islands present a perfect opportunity for scientists to try and understand the origin of continents.

By collecting samples of volcanic ash erupted at Kanaga and other volcanoes of the Aleutian arc, Mattia and his colleagues are currently investigating the origin of this volcanic ash. Understanding its chemistry allow the team to get a clearer idea of the conditions that were present while the magma was forming and ascending, for example, how much water and iron were present.

The team were based on the Maritime Maid research vessel, and hoped from island to island collecting samples and taking measurements of volcanic activity as part of a large research consortium called GeoPRISMS, funded by the National Science Foundation. The field work was supported by a Bell 407 helicopter and its crew.

Today’s featured image shows an andesitic lava flow erupted in 1906. The volcanic deposits were explored during the field geological mission by Mattia and the team. Kanaga last erupted in 1994. Ash from that eruption was found in the nearby island of Adak. Even at present, there is a highly active system of fumaroles at the summit of the volcano.

If you pre-register for the 2017 General Assembly (Vienna, 22 – 28 April), you can take part in our annual photo competition! From 1 February up until 1 March, every participant pre-registered for the General Assembly can submit up three original photos and one moving image related to the Earth, planetary, and space sciences in competition for free registration to next year’s General Assembly!  These can include fantastic field photos, a stunning shot of your favourite thin section, what you’ve captured out on holiday or under the electron microscope – if it’s geoscientific, it fits the bill. Find out more about how to take part at http://imaggeo.egu.eu/photo-contest/information/.

Follow

Get every new post on this blog delivered to your Inbox.

Join other followers: