GeoLog

Sessions

Heat waves in cities getting worse under climate change

Heat waves in cities getting worse under climate change

The effects of climate change are being felt all over the world but towns and cities are feeling most hot-under-the collar, a new study finds.

Cities are usually warmer than their surroundings due to the urban heat island effect where artificial surfaces absorb more heat than their natural counterparts. Coupled with the loss of the shady effects of trees, urban areas regularly record the hottest temperatures around.

However a study by Dr Hendrik Wouters and colleagues from KU Leuven in Belgium has found that cities are getting even hotter from the effects of climate change with an increase in heat-waves.

Heat-waves are periods of time where temperatures exceed the ‘normal’ high levels. These events are already problematic in urban areas causing power surges, excessive hospitalisations and even deaths.

Wouters and colleagues have investigated how much worse this problem is likely to get as extreme weather events become more common.

Speaking at a press conference at the EGU 2017 General Assembly on 25th April, Wouters said ‘we look at how much temperature levels are exceeding during heat waves‘. Using the expected average temperatures, the climatologists can calculate a threshold of ‘normal’ temperatures and then quantify how often these values are exceeded.

This information was gathered for the whole of Belgium over the 34 years prior to 2015. In rural areas this ‘alarm’ threshold was exceeded at least twice. In urban areas the heat-stress was considerably higher- up to 16 exceedances. Overall, heat-stress was twice as large in cities for the mid 21st century.

Cities (red) show much higher annual degree exceedances than rural areas (green). These exceedances are set increase into the future. (Wouters et al., EGU 2017).

In order to anticipate how much worse this problem might get, the group have modelled heat-stress events for the next 58 years. Wouters was keen to highlight that the severity and frequency of the events is dependent on many factors: ‘There is not only one scenario for the future, it depends on how many greenhouse gases we emit and how much land change will evolve in the future.’

In an extreme scenario, where greenhouse gas emissions and urban growth increase, as many as 25 days in a year could exceed alarm levels by up to 10 degrees celsius. However, if we start to reduce our emissions, the heat-stress problem is likely to stay at current levels.

By Keri McNamara, EGU 2017 General Assembly Press Assistant

The publication issue: the opinions of EGU early career scientists!

The publication issue: the opinions of EGU early career scientists!

The EGU’s General Assemblies have a long tradition of Great Debates – sessions of Union-wide interest which aim to discuss some of the greatest challenges faced by our discipline. Past topics have included exploitation of mineral resources at the sea bed, water security given an ever growing population and climate geoengineering, to name but a few.  This year’s meeting saw the first Great Debate aimed, specifically, at an Early Career Scientist (ECS) audience which boasted an innovative format too: Should early career scientists be judged by their publication record? A set of group debates. Today’s post, written by Mathew Stiller-Reeve, a convener of the session, summarises some of the main outcomes of the discussion.

We, early career scientists, are told that we need to become expert writers, presenters, and teachers if we are going to make it in the world of research. Many of us agree such transferrable skills are extremely important. But if we invest time in developing these skills, it sometimes feels like time wasted. All said and done, we only seem to be judged on our publication record and our h-index. How many papers have we published in high impact journals, and how often have they been cited?

Early career scientists seem very clued up on transferrable skills. They want to invest in these skills. Therefore, we wanted to hear from them about whether ‘early career scientists [should] be judged mainly on their publication record?’ And so we put this question to them (and others) at a Great Debate at the EGU’s 2017 General Assembly. We also wanted to test out a new format where the audience had the opportunity to voice their opinions about important issues concerning modern academia. The publication issue affects us all, so we should have a say.

With only 8 people at each table and over 40 minutes to debate, everyone had an opportunity to speak their mind and contribute to developing solutions. The room was buzzing with over 100 early career and more established scientists discussing, agreeing, disagreeing, and finding compromises.

In the end, each table was tasked to debate and boil their thoughts down to one or two policy-type statements. These statements will be presented to the EGU Council to inform them of where EGU early career scientists stand on this matter.

So without further ado, here are the conclusions of the tables:

– We need more criteria. Quality is most important, measured by prizes, PhD results and the incorporation of the community via new media.

-More activities need to be taken into account in a measurable way, but according to scaled categories #notjustanumber.

-The current system is cheap, easy and fast. A person should be judged on the broader contributions to society, to their colleagues, to their disciplines. We should move beyond metrics.

-Because scientists are more than a list of publications, assess them individually. Talk to them and read their output, including publications, blogs and chapter/book contributions.

-We should not be judged on publication record alone. We need a multi-variant set of criteria for assessment for judgment of impact beyond just academic publications.

-One suggestion is a weighted metric depending on the position you’re applying for which considers other factors such as teaching, outreach, conference participation etc.

-No, the h-index should not be the sole number, even though it is not a totally useless number.

-Quality should be judged on more than quantity and the large number of authors on publications devaluates the contributions of early career scientists.

-Publications are the accepted way of communication in science, but there is not any one number describing the quality of the early career scientist, whom in our humble opinion should not only be judged on the quantity of papers but also on their quality as a part of a complete set of research skills, including other contributions such as project development.

-We acknowledge the publication record as a reliable metric, but we suggest an additional step for assessing applications, based on video or audio presentations to emphasize your other outstanding qualities.

-We doubt that we are mainly judged on our publication record and we think that publications should be part of what we are judged on.

-When hiring, follow the example of the Medical Department at Utrecht University: only ask for the 3 papers, teaching or outreach experiences you think are important for the position you are applying for: we are more than numbers.

Should they be adopted? Do you agree? How can we adopt them?

The message in many of the statements from the Early Career Scientists at the European Geosciences Union is quite clear: We are more than numbers! Several suggestions arose from the debate: new metrics, video presentations, and even new application processes. Now the statements from the debate are recorded. This will hopefully inspire us (and others) to find better solutions. At the very least, the discussion has begun. Solutions are impossible if we don’t talk!

By Mathew Stiller-Reeve, co-founder of ClimateSnack and researcher at Bjerknes Centre for Climate Research, Norway

Editor’s note: This is a guest blog post that expresses the opinion of its author and those who participated at the Great Debate during the General Assembly, whose views may differ from those of the European Geosciences Union. We hope the post can serve to generate discussion and a civilised debate amongst our readers.

April GeoRoundUp: the best of the Earth sciences from the 2017 General Assembly

April GeoRoundUp: the best of the Earth sciences from the 2017 General Assembly

This month’s GeoRoundUp is a slight deviation from the norm. Instead of drawing inspiration from popular stories on our social media channels and unique or quirky research featured in the news, we’ve rounded up some of the stories which came out of researcher presented at our General Assembly (which took place last week in Vienna). The traditional format for the column will return in May!

Major story

Artists often draw inspiration from the world around them when composing the scene for a major work of art. Retrospectively trying to understanding the meaning behind the imagery can be tricky.

This is poignantly true for Edvard Munch’s iconic ‘The Scream’. The psychedelic clouds depicted in the 18th Century painting have been attributed to Munch’s inner turmoil and a trouble mental state. Others argue that ash particles strewn in the atmosphere following the 1883 Krakatoa volcanic eruption are the reason for the swirly nature of the clouds represented in the painting.

At last week’s General Assembly, a team of Norwegian researchers presented findings which provide a new explanation for the origin of Munch’s colourful sky (original news item from AFP [Agence France-Presse): mother-of-pearl clouds. These clouds “appear irregularly in the winter stratosphere at high northern latitudes, about 20-30 km above the surface of the Earth,” explains Svein Fikke, lead author of the study, in the conference abstract.

“So far observed mostly in the Scandinavian countries, these clouds are formed of microscopic and uniform particles of ice, orientated into thin clouds. When the sun is below the horizon (before sunrise or after sunset), these clouds are illuminated in a surprisingly vibrant way blazing across the sky in swathes of red, green, blue and silver. They have a distinctive wavy structure as the clouds are formed in the lee-waves behind mountains”, writes Hazel Gibson (EGU General Assembly Press Assistant) in a post published on GeoLog following a press conference at the meeting in Vienna (which you can watch here).

With coverage in just over 200 news items, this story was certainly one of the most popular of the meeting. Read more about the study in the full research paper, out now.

What you might have missed

Also (typically) formed in the downside of mountains and in the conference spotlight were föhn winds. The warm and dry winds have been found to be a contributing factor that weakens ice shelves before a collapse.

Ice shelf collapse has been in the news recently on account of fears of a large crack in the Larsen C Ice Shelf generating a huge iceberg.  Though the exact causes for crack generation on ice shelves remain unclear, new research presented by British Antarctic Survey scientists at the conference in Vienna highlighted that föhn winds accelerate melting at the ice shelf surface.  They also supply water which, as it drains into the cracks, deepens and widens them.

Meanwhile, deep under ocean waters, great gouge marks left behind on the seafloor as ancient icebergs dragged along seabed sediments have been collected into an Atlas of Submarine Glacial Landforms, published by the Geological Society of London. The collection of maps sheds light on the past behaviour of ice and can give clues as to how scientists might expect ice sheets to respond to a changing climate.

Drumlins (elongate hills aligned with the ice flow direction) from the Gulf of Bothnia in the Baltic Sea. Credit: Atlas of Submarine Glacial Landforms/BAS

Closer to the Earth’s surface, groundwater also attracted its fair share of attention throughout the meeting. It’s hardly surprising considering groundwater is one of the greatest resources on the planet, globally supplying approximately 40% of the water used for irrigation of crops and providing drinking water for billions around the world. ‘Fossil’ groundwater, which accumulated 12,000 years ago was once thought to be buried too deep below the Earth’s surface to be under threat from modern contaminants, but a new study presented during the General Assembly has discovered otherwise.

Up to 85% of the water stored in the upper 1 km of the Earth’s outermost rocky layer contains fossil groundwater. After sampling some 10,000 wells, researchers found that up to half contained tritium, a signature of much younger waters. Their presence means that present-day pollutants carried in the younger waters can infiltrate fossil groundwater. The study recommends this risk is considered when managing the use of fossil waters in the future.

Links we liked

News from elsewhere

The spectacular end to the Cassini mission has featured regularly in this month’s bulletins.

During its 13 years in orbit, Cassini has shed light on Saturn’s complex ring system, discovered new moons and taken measurements of the planet’s magnetosphere. On September 15th,  the  mission will end when the probe burns up in Saturn’s atmosphere.

On 22 April, the final close flyby of Saturn’s largest moon, Titan, propelled the Cassini spacecraft across the planet’s main rings and into its Grand Finale series of orbits. This marks the start of the final and most audacious phase of the mission as the spacecraft dives between the innermost rings of Saturn and the outer atmosphere of the planet to explore a region never before visited; the first of 22 ring plane crossings took place on 26 April.You can watch a new movie which shows the view as the spacecraft swooped over Saturn during the dive here.

For an overview of highlights from the mission and updates from the ring-grazing orbits that began in November 2016 watch this webstream from a press conference with European Space Agency scientists at the General Assembly last week.

To stay abreast of all the EGU’s events and activities, from highlighting papers published in our open access journals to providing news relating to EGU’s scientific divisions and meetings, including the General Assembly, subscribe to receive our monthly newsletter.

Follow

Get every new post on this blog delivered to your Inbox.

Join other followers: