WaterUnderground

Water Underground

The home of our hearts day 3: The coal story – mines and mine water remediation

The home of our hearts day 3: The coal story – mines and mine water remediation

[part four of a special six-part blog series by Mark Ranjram, MEng student at McGill University. From June 8 to June 13 2014, Mark had the privilege of being a part of the Canadian Water Network’s (CWN) Student and Young Professionals (SYP) Workshop in Cape Breton Island, Nova Scotia. Here is the prologue to this series.]

Coal mining is an essential part of the history of Cape Breton Island, and thus was the focus of the third day of the workshop. We began the day by exploring active and passive remediation methods used on Cape Breton to deal with their problems with mine water. Our stops included a very large waste rock pile that had been capped and vegetated; a water treatment facility removing iron- and sulphur-rich water from decommissioned mines; and a wetland facility doing the same. It was such an exciting experience to be able to put a real world picture on some of the theory you learn about in coursework and it was a very motivating thing to see a community attacking their environmental problems with such innovative solutions!

6

An engineered wetland used to passively remediate iron-rich mine water. Photo Credit: Gary Pardy

On the second half of the day we travelled to the Coal Miners Museum in Glace Bay, where we were treated to a tour down an actual coal mine from an actual coal miner. A relevant caveat here is that the coal mine we toured was never actually worked for coal, but built specifically to give tours. Our tour guide, Wishie “Wish” Davidson, walking around hunched over with a cane in his hand, gave us the history of coal mining in Cape Breton, which is an industrial tale that would make Dickens jealous. Wish described the “company stores” that were the only sources of food, clothes, and other amenities in the coal mining towns, which forced miners into debt by setting exorbitant prices, and the “company homes” which would allow families to stay so long as they had a worker in the mines and were willing to have their wages docked to pay for the privilege. As we travelled into the 150 foot mine (with four foot ceilings at its shortest section), Wish described the suffocating, nightmarish conditions the miners had to deal with, including the pitch blackness, constant coal dust, cacophony of the drill machines, and the aches and physical trauma that came with shovelling tonnes of coal each day. The remarkable struggle of the workers really put into perspective what actual hardship is, and was a stark contextualization for me of how the challenge of finding solutions to our water problems can in no way be as brutal as the challenge of waking up at four in the morning, six days a week, to travel miles into the ground, and work for fourteen hours in dust, noise, darkness, and pain only to get paid for what you brought to the surface, and only then getting to take home pay that the companies didn’t get their hands on first.

7

Wish Davidson giving us a tour of the Ocean Deeps Colliery. The cement lining quickly ends as you travel down the tunnel, and you are left surrounded by black coal and timber in passageways as small as four feet in height. Photo Credit: Liana Kreamer

Following the mine tour, we had an additional opportunity to experience the story of coal mining in Cape Breton at an incredible concert given by the “Men of the Deeps,” a choral group that has toured across the world and is composed entirely of miners who worked in the coal mines at some point during their careers. This added another dimension of awe to the performance, as coal mining has been shut down in Cape Breton since 2001, and so the men on the stage were the last men in Cape Breton that could ever tell us these stories. Indeed, it is difficult to express how moving it is to hear a group of people sing about a way of life that was designed to crush them but is still an indelible component of their personal identity. The chorus of one of the songs they sang, called “Sixteen Tons,” gives a great example of how powerful the concert was: “You load sixteen tons, what do you get?/Another day older and deeper in debt/Saint Peter don’t you call me cause I can’t go/I owe my soul to the company store.”

8

The Men of the Deeps. Photo Credit: Kristen Leal

No matter how much hyperbole we like to kick around, our challenges with apathy, misinformation, and politics are drops in the bucket compared to the daily misery that the coal miners faced. Whenever I feel that spectre of cynicism telling me to throw up my hands and curse at our environmental challenges and stewardship decisions, I think remembering the Sydney coalmines will give me a place to anchor my optimism: it can’t be that bad!

Next post in series…

 

 

The home of our hearts day 2: The Unama’ki Institute for Natural Resources and a medicine walk to Glooskap’s cave

[part three of a special six-part blog series by Mark Ranjram, MEng student at McGill University. From June 8 to June 13 2014, Mark had the privilege of being a part of the Canadian Water Network’s (CWN) Student and Young Professionals (SYP) Workshop in Cape Breton Island, Nova Scotia. Here is the prologue to this series.]

After an emotional and inspirational first night together, we had the great privilege to begin the first full day of the workshop at the Unama’ki Institute for Natural Resources (UINR), a collaborative local institution operated by the Mi’kmaq nation dedicated to environmental stewardship on Cape Breton Island. At the UINR we had the amazing opportunity to hear from Charlie Dennis, a senior advisor at the UINR, and Elder Albert Marshall, a senior and influential voice in the Mi’kmaq nation. The clarity of their vision and their expression of the deep, fundamental connection the Mi’kmaq have to their environment was deeply inspiring. Elder Albert described the four R’s that are central to the Mi’kmaq decision making process: reverence, respect, reciprocity, and responsibility, and his concept of two-eyed seeing, or balancing traditional aboriginal knowledge with contemporary western science. The sincerity of the UINR’s efforts and their terrific successes reflect an amazing capacity for a local community to focus their knowledge and energy into real, practical solutions. The power of a deep-seated knowledge of your local environment in developing sustainable social, economical, and environmental solutions is something that really resonated with me, and has got me thinking about how I can apply the profound philosophies of the Mi’kmaq people to environmental education in my home community.

4

Elder Albert Marshall. Photo Credit: Liana Kreamer

From the UINR we headed off to the trailhead of Glooskap’s cave, a sacred place for the Unama’ki and where their creation story begins. Jeff Ward rejoined our group along with Cliff Paul, the Moose Management Coordinator at the UINR; and Tuma Young, an assistant professor at Cape Breton University with a deep knowledge of local flora and fauna. We were invited to clear our minds and spirits by participating in a smudging ceremony, and then proceeded along the roughly 4 km hike to Glooskap’s Cave. Along the way, Tuma identified traditional medicines and cut us all a piece of a branch with a sap that provides a red-bull like energy kick. The trail to Glooskap’s cave ends with you scaling down a ravine and traveling next to (and in) a river which leads to a beach that is Glooskap’s cave. The view of the outlet when you turn past the last bulge of rocks is incredible, and when you realize how important this one stretch of land is to the people who have invited you into their family and traditions, you cannot help but feel like you’ve reached some critical, indescribable intersection between the emotional, physical, spiritual, and intellectual. We ended our time at the beach by making a food offering and participating in a prayer, a mesmerizing chant led by Jeff’s son and a single beating drum. On the way back to the bus, the entire group was clearly in awe of what had happened and how empowering a sincere, respectful relationship with the natural world can be.

5

Glooskap’s Cave. Photo Credit: Liana Kreamer

Next post in series…

The home of our hearts day 1 – twenty-five strangers walk into a Mi’kmaq talking circle…

The home of our hearts day 1 – twenty-five strangers walk into a Mi’kmaq talking circle…

[part two of a special six-part blog series by Mark Ranjram, MEng student at McGill University. From June 8 to June 13 2014, Mark had the privilege of being a part of the Canadian Water Network’s (CWN) Student and Young Professionals (SYP) Workshop in Cape Breton Island, Nova Scotia. Here is the prologue to this series.]

When I first decided to attend this workshop, I made a commitment to myself that I would jump into it head first, and if the pool was shallow, well, at least I tried, and if the pool was deep, what a special experience it could be. Lucky for me, every single person at the workshop was ready to take a swim! Nothing better illustrates how committed everyone was to make something special than our first night together at the Membertou Heritage Centre in Sydney.

The Membertou First Nation is one of five Mi’kmaq groups in the tribal district of Unama’ki (Cape Breton Island). I won’t go into much detail here, but Membertou has an amazing success story (I encourage you to learn more about the community here). After an engaging few hours discussing the culture and history of the Mi’kmaq Nation and the Gaelic immigrants that settled the Island in Canada’s early colonial history, we organized our group into a large circle and were guided through a talking circle. A talking circle is a foundational communication ritual in Mi’kmaq culture in which a symbolic item is passed within the group, with the person holding the symbol (in our case, an eagle feather – an item of great significance in the culture) having sole authority to speak. Our guide, Jeff Ward, dressed in full regalia and lighting sage, led us through four rounds of the circle, with each round having a different theme connected to the four cardinal directions. Immediately after the first few people had spoken, it became clear that there was something special happening. The circle was at times serious, sombre, amusing, and painful, but underlying it all it was incredibly sincere.

Image

Jeff Ward preparing us for our talking circle

A major theme in the circle was having hope when everything is hopeless, and the importance of reconnecting with the idealism and optimism that we all had before the pressures of the real world converted that idealism into cynicism. A major talking point was how difficult it is to stay inspired at work or with research, because of creative limits, financial limits, or just the daily grind of professional life, and how incredibly isolating it can be to be stuck without inspiration. The irony we all came to realize of course is that we had a community in that circle of people who felt isolated in the same way. And suddenly, a group of twenty-five strangers decided that we could be each other’s positive framework, that we could fight against cynicism to give us the chance to be idealistic once again. Whether it was the talking circle, or the strange consequence of being in a completely new place with completely new people, we decided in that moment to be vulnerable, open, and honest, and now, more than a week later, I can say that I consider each and every one of those people a friend who I will fight for to make sure they make their mark on the world. And after just five days with them, I am certain that they have the drive and talent to do just that! The energy in that circle when we realized we could be each other’s motivation was powerful, and when we as up and coming water researchers and professionals no longer have to worry about being bogged down by regressive thinking, the energy we have to help develop solutions is limitless. And if you are a young water professional or researcher, know that this is not an exclusive community! If you want to make a positive change, we want you with us. If you feel defeated and cynical, we want you with us. What a movement this could be!

Image

A view around the circle. Photo Credit: Liana Kreamer

 Next post in series…

The home of our hearts, Cape Breton – A transformative professional experience with the Canadian Water Network (Part 1 of 6: prologue)

The home of our hearts, Cape Breton – A transformative professional experience with the Canadian Water Network (Part 1 of 6: prologue)

Prologue

[part one of a special six-part blog series by Mark Ranjram, MEng student at McGill University. From June 8 to June 13 2014, Mark had the privilege of being a part of the Canadian Water Network’s (CWN) Student and Young Professionals (SYP) Workshop in Cape Breton Island, Nova Scotia]

Let me start this series off by expressing how life changing this event was for me. I am very much a technical water person, more comfortable expressing my knowledge of water using differential equations than a sequence of coherent, elegant words, but I’ve always loved to hear people tell their water stories, and that ability to instantiate into reality the deep connection our species has with water has always been a powerful motivator for me. After leaving the CWNSYP workshop in Cape Breton, Nova Scotia all I can think about is how the intersection of first nations experience; twenty brilliant students/young professionals from across Canada; five dedicated and inspirational mentors; and the indescribable magic of the community that is Cape Breton Island has given me a mountain of emotional, intellectual, physical, and spiritual capital that I will fight to carry for the rest of my life.

Before we dive into the daily experiences at the workshop, I want to take a paragraph to express what an impressive job the hosts of the workshop did in providing a framework for us participants to unleash our enthusiasm and experience a moment none of us will soon forget. As I hope I’ve successfully expressed in the posts that follow, the diversity of each day’s itinerary was something special. The commitment to providing a robust discussion of water issues contextualized against historical, emotional, and spiritual aspects of water was constant and elevated the workshop to a remarkable place. So, a sincere thank you to the Verschuren Centre of Cape Breton University and the Canadian Water Network for organizing this event; and a very special thanks to our on-the-ground Cape Breton hosts: David Alderson, Martin Mkandawire, Ken Oakes, and Ashlee Consolo Willox; and our Canadian Water Network liaison Liana Kreamer. If you ever get a chance to work with the Verschuren Centre or the CWN, I would strongly suggest you jump at the chance!

The title of this blog post is from a song called “The Island Song” which is the unofficial anthem of Cape Breton and was the de-facto theme song of our time out there (It also inspired the name of the workshop, “A rock in the stream”). 

Next post in series…

Two great science communication tools for conferences and teaching: smart screens and cell phones

Two great science communication tools for conferences and teaching: smart screens and cell phones

A few weeks ago at the European Geosciences Union in Vienna I learned about two dead-easy and great science communication tools for conferences.  These are great for any conference hall or meeting, but could be just as easily be used in the classroom to make a more exciting in class research presentations. For better or worse, most of us are carrying them (or looking at them!) right now: a smart screen or cell phone.

The EGU conference uses smart screens in their innovative PICO (Presenting Interactive COntent) sessions. Every PICO author first presents orally in a 2-minute science blitz and then has a smart screen pre-loaded with a dynamic presentation to discuss further with colleagues. Simple and effective.

pico

Jan Siebert (University of Zurich) showing off just how dynamic PICO sessions are.

While I was a traditional poster session, Hannes Müller Schmied of Frankfurt University pulled out his cell phone to show me some additional visualizations (in this case global hydrologic model results posted on their website – this was connected to his poster with a QR code!). It was great to for him to be able to walk me through the results right there rather than be limited by the static images on his poster. We immediately realized this should be called micro-PICO!

micro-pico

Hannes Müller Schmied showing off model results in this micro-PICO session with his poster in the background.

Thanks EGU for teaching me about two super simple and effective science communication tools, which I hope will cross the pond to AGU and other meetings.

and we have a winner….Coolest Hydrogeology Paper of 2013 Winners announcement

and we have a winner….Coolest Hydrogeology Paper of 2013 Winners announcement

From Matt Currell on  Linkedin:

It is with great pleasure that I can announce the winners of the first ever ‘coolest paper of the year’ competition, organised by the steering committee of the ECHN.

Big congratulations to the authors of our winning paper:sebnem_arslan
Şebnem Arslan et al: Environmental isotopes and noble gases in the deep aquifer system of Kazan Trona Ore Field, Ankara, central Turkey and links to paleoclimate. Quaternary Research, 79(2): 292-303.

 

The runners up in the competition were:
Ying Fan et al: Global patterns of groundwater table depth. Science, 339(6122): 940-943.
Richard Taylor et al: Ground water and climate change. Nature Climate Change, 3: 322-329.

There was a very high quality of papers nominated, and large number of votes cast in the competition. Overall a great success!
The awards ceremony will take place at the IAH 2014 in Marrakech, Morocco. Thanks to all who participated, and we look forward to next year’s Coolest Paper competition!

One in four of world’s big cities water-stressed

One in four of world’s big cities water-stressed

From the McGill Newsroom

As more people move to urban areas, cities around the world are experiencing increased water stress and looking for additional water supplies to support their continued grow.

The first global database of urban water sources and stress, published online this week in Global Environmental Change, estimates that cities move 504 billion litres of water a distance of 27,000 kilometers every day. Laid end to end, all those canals and pipes would stretch halfway around the world. While large cities occupy only 1% of the Earth’s land surface, their source watersheds cover 41% of that surface, so the raw water quality of large cities depends on the land use in this much larger area.

An international team of researchers from nine institutions, including McGill University in Montreal, surveyed and mapped the water sources of more than 500 cities, providing the first global look at the water infrastructure that serves the world’s large cities. The study was led by Rob McDonald, senior scientist with the Nature Conservancy in Arlington, Va.

Prof. Bernhard Lehner and PhD student Günther Grill of McGill’s Department of Geography contributed a detailed global map of rivers, lakes and watersheds to help map the water sources of each city, while Prof. Tom Gleeson of McGill’s Department of Civil Engineering conducted analysis for groundwater sources.

The research team used computer models to estimate the water use based on population and types of industry for each city, and defined water-stressed cities as those using at least 40% of the water they have available. Previous estimates of urban water stress were based only on the watershed in which each city was located, but many cities draw heavily on watersheds well beyond their boundaries. In fact, the 20 largest inter-basin transfers in 2010 totaled over 42 billion liters of water per day, enough water to fill 16,800 Olympic-size pools.

There is good news in the findings: Many cities are not as water-stressed as previously thought. Earlier estimates put approximately 40% of cities into the water-stressed category. This analysis has the number at 25%.

The study finds that the 10 largest cities under water stress are Tokyo, Delhi, Mexico City, Shanghai, Beijing, Kolkata, Karachi, Los Angeles, Rio de Janeiro and Moscow. (Neither of the two Canadian cities analyzed — Toronto and Montreal — was water-stressed, according to the definition used in the study.)

The study also makes clear the extent to which financial resources and water resources are intertwined. It is possible for a city to build itself out of water scarcity — either by piping in water from greater and greater distances or by investing in technologies such as desalinization — but many of the fastest growing cities are also economically stressed and will find it difficult to deliver adequate water to residents without international aid and investment.

“Cities, like deep rooted plants, can reach a quite a long distance to acquire the water they need,” says McDonald. “However, the poorest cities find themselves in a real race to build water infrastructure to keep up with the demands of their rapidly growing citizenry.”

The study also reveals that:

  • Four in five (78%) urbanites in large cities, some 1.21 billion people, primarily depend on surface water sources. The remainder depend on groundwater (20%) or, rarely, desalination (2%).
  • The urban water infrastructure of large cities cumulatively supplies 668 billion liters daily. Of this, 504 billion liters daily comes from surface sources, and that water is conveyed over a total distance of 27,000 km.
  • Land use in upstream contributing areas affects the raw water quality and quantity of surface water sources.
  • An estimated one-quarter of large cities in water stress contain $4.8 trillion of economic activity, or 22% of all global economic activity in large cities. This large amount of economic activity in large cities with insecure sources of water emphasizes the importance of sustainable management of these sources, not just for the viability of individual cities but for the global economy.

The research was supported by a grant from the Gordon and Betty Moore Foundation.

———-

“Water on an urban planet: urbanization and the reach of urban water infrastructure,” Robert. I. McDonald, et al, Global Environmental Change, published online June 2, 2014. http://dx.doi.org/10.1016/j.gloenvcha.2014.04.022

Groundwater extraction can move mountains

Groundwater extraction can move mountains


Contributed by Pascal Audet (webpage or email)

1977-Poland_telephonepole

Historic 1977 photo of Dr. Joseph Poland, USGS, considered the pioneer of scientific subsidence studies. Dates on telephone pole indicate previous land elevations in an area SW of Mendota. Photo credit: U.S. Geological Survey

Next time you eat food grown in the San Joaquin Valley of California, think about this: the water used for growing them probably came from under ground. Farmers do not really have a choice because the amount of water from rain and snow can’t keep up with the needs for growing food. Every year more water is drawn out of the ground for irrigation. Because of this, the floor of the San Joaquin Valley goes down as the sediments compact once the water is out (see picture on right).

In the latest work from our team, we find a surprising side effect of groundwater pumping: the mountains surrounding the valley (the Sierra Nevada and California Coast Ranges) are moving up a few millimeters each year, as shown by a large number of GPS instruments. This may seem very small to humans, but for hard rocks it is quite fast. We find that this uplift can be explained by the loss of water out of the ground, as shown by gravity data from the GRACE satellite. The water lost through irrigation lowers the weight on the Earth’s crust, which responds by bouncing back up like a spring.

One interesting implication of this study is the impact on earthquakes on the San Andreas Fault. Uplift of the crust (and mountains) decreases the grip on the fault, making it easier to slip and cause small earthquakes during busier times of groundwater pumping. Perhaps more important, our study shows that humans can really move mountains through industrial agriculture. In California, this effect may get worse because more droughts, earlier snowmelt and different rainfall patterns are expected due to climate change.

This article is the second in a series of plain language summaries on Water Underground (link to first). The 5upgoer word processor showed that ~80% of the words in this post are in the 1000 most common words in the English language. For recent news coverage of this article check out this.

What busy profs would like to read in a blog post about active learning

What busy profs would like to read in a blog post about active learning

During a great workshop today on active learning in engineering at McGill I asked two questions (using Socrative) , of the audience. Here is a summary of 24 answers I received:

1) I would like to read blog posts about:

  • activities for large classes (18% of people)
  • activities for small classes (30% of people)
  • technology in active learning (22% of people)
  • wacky or creative ideas for active learning(30% of people)

2) I might read a blog post about teaching and supervision if…

  • It takes into account the sheer lack of time and resources for preparation; ie quick and easy ideas to engage a bored class!
  • it was linked through twitter
  • It was regularly updated and interesting!
  • It does not take too long
  • it helps me achieve better my teaching objectives compared to my current teaching practice
  • It related to economics / social science a bit
  • Its short and introduce tips and examples
  • It gives concrete practical examples of activities for teaching and making students more active
  • I was interested
  • I knew where to find it
  • It dealt with distance education
  • they talked about encouraging creativity and critical thinking
  • it was about new and creative strategies that I can use in my class
  • it included the occasional evidence-based pieces that demonstrate real impact
  • Give ideas about how to get the students more active
  • It’s concrete, thoughtful and provides ideas
  • it was relevant and to the topic. I also would like to see it promoted within the departments to encourage conversation about teaching and learning
  • It is useful

My summary is that people want to hear about all types of different aspects of active learning and they would be motivated to read posts if it interesting and provided something useful.

Thanks Michael Prince of Bucknell for the great workshop and Milwaukee Mag for the image.

Follow

Get every new post on this blog delivered to your Inbox.

Join other followers: