WaterUnderground

Teaching & Supervision

Everything is connected

Everything is connected

Post by Anne Van Loon, Lecturer in Physical Geography (Water sciences) at the University of Birmingham, in the United Kingdom.

__________________________________________________

In recent years the human dimension of hydrology has become increasingly important. Major flood and drought events have shown how strongly water and society are intertwined (see here and here). The hydro(geo)logical research community is increasingly including this human dimension, for example within the IAHS Panta Rhei decade (link), which focuses on the interface between environment and society and aims to “make predictions of water resources dynamics to support sustainable societal development”. Previous Water Underground blog posts have shown the importance of this topic and highlighted opportunities and methodologies for scientists to engage with socio-hydro(geo)logy and humanitarian projects. Viviana Re, for example, introduces the term socio-hydrogeology and promotes sustainable groundwater management in alliance with groundwater users (link). And Margaret Shanafield argues that humanitarian groundwater projects are “an opportunity for scientists to have an impact on the world by contributing to the collective understanding of water resources and hydrologic systems” (link).

In our interdisciplinary project CreativeDrought (link), which uses local knowledge and natural and social science methods to increase local preparedness for uncertain future drought, we are applying these ideas and we realise how important different types of connections are in our two-way learning process. We just completed our second fieldwork phase of the project that consisted of workshops in which groups of people from a rural community in South Africa experimented with potential future drought scenarios and created stories about how they would be impacted by the drought and what they could do to prepare for and adapt to it. Our scientific team consisted of hydrologists and social scientists from local and UK-based institutes and the groups in the community who participated were the village leaders, livestock farmers, irrigation farmers, young mothers, and elderly people.

Young women collecting water from communal standpipe (photo: Sally Rangecroft).

Both the scientific team and the community groups were interested to learn from each other’s knowledge and experience (or just curious, see photo below of our Zimbabwean colleague Eugine measuring irrigation canal discharge with an apple). During the time we spent in the community (four weeks in March/April and two weeks in July) we both learned about important connections. As hydrologists and hydrogeologists we know that different parts of the hydrological system are connected and that these connections are extremely important if you want to understand, predict, and manage the system. Knowledge about the connection between groundwater and surface water is what we as hydrologists could bring to the community. The community was getting their water from different sources: drinking water from a groundwater well, irrigation water from a reservoir that releases water into the river, and water for bathing, washing, brick making, and cleaning cars from the river. By showing how a drought would affect each of these water supplies and discussing amongst groups that would be affected differently by a drought, they learned about the connection between the water bodies and how abstraction in one would affect the other.

Researchers measuring discharge with help of schoolchildren and collecting stories about previous droughts and floods (photos: Anne Van Loon and Sally Rangecroft).

We scientists also learned some important connections from the community. For example, our project focuses on drought but when we asked the community to tell us about droughts they had experienced in the past, many also told us about flood events. For the community, both are water-related extreme events that often even impact them similarly, with crop loss, drinking water problems, diseases, etc. Even though floods and droughts are governed by different processes (floods by fast, mostly near-surface pathways and droughts by slower, sub-surface storage related pathways) and different tools and indices are used to characterise both extremes, people at local scale have to deal with both floods and droughts when the hydrological system goes from one into the other or when both occur simultaneously in different parts of the hydrological system. We realised that our academic world is so fragmented that we often forget about connecting floods and droughts in our scientific work. Furthermore, we forget that we may affect one hydrological extreme when trying to manage our resources for the opposite hydrological extreme.

The most important, but unintended connections we discovered, however, were the connections between people. During our stays in South Africa, we connected as hydrologists and social scientists and between the UK-based and local researchers, learning to communicate across different disciplines, languages and audiences. The project also helped the community rediscover some connections between generations (young mothers and elderly ladies) and between different sectors (livestock farmers and irrigation farmers). And finally, we as a scientific team connected with the community. As a token for our newly established connection, the children’s dance group performed traditional dances during our final visit with the chief and the village leaders (see below), only bestowed on very special guests. That is the best confirmation we could get that personal connections are important and that our water management and our science depend on them!

Everyone connected: researchers, village leaders, dancers (photo: Khathutshelo Muthala).

__________________________________________________

Anne Van Loon is a catchment hydrologist and hydrogeologist working on drought. She studies the relationship between climate, landscape/ geology, and hydrological extremes and its variation around the world. She is especially interested in the influence of storage in groundwater, human activities, and cold conditions (snow and glaciers) on the development of drought.

Bio taken from Anne’s University of Birmingham page.

Crowdfunding Science: A personal journey toward a public campaign

Crowdfunding Science: A personal journey toward a public campaign

Post by Jared van Rooyen, MSc candidate in Earth Science at Stellenbosch University, in South Africa.

Part one of three in a Crowdfunding Science series by Jared.

___________________________________________________________

When my supervisor, Dr Jodie Miller, suggested to me last year that we should look at crowdfunding as a way to potentially to fund my master’s project, I had no idea of what I was about to get myself into. All through my honours year I was not really interested in doing further postgraduate study. She kept warning me that I might change my mind and that I should apply for funding “just in case”. But I was sure of my position.  And then, as I started the final five weeks of my honours year, I finally got to focus 100% on my research project. Suddenly, as I focused in on my data, all the possibilities started to leap out at me. I went from a BSc (Hons) student, who was not considering continuing my postgraduate studies at all, to someone who is passionate about water resource research and continuing my postgraduate career. This is apparently common amongst postgraduate students in science, who become exponentially more immersed in their field of study as they realise that their work isn’t just numbers and experiments, but has significant real world applications.

Once I had committed – there was no turning back. The learning curve for mounting a successful crowdfunding campaign is steep and slippery. As much as it is hard, stressful work it is also fulfilling, fun, and full of surprises. The biggest obstacle is one that most modern day scientists are confronted with already: How do I make my research attractive to people who don’t have years of passion invested in my work?

Well, the answer is not simple.

I have completed a wide variety of modules in my tertiary studies but none in any forms of multi-media marketing skills. So naturally, when I had this crowdfunding campaign in front of me, I was so far out of my comfort zone that I felt like a geologist at a slam poetry evening. After numerous conversations with my peers who had experiences in marketing and graphic design, I had gathered a basic understanding of the inner workings of the unfathomably enormous media machine.

From the very first day I arrived back at the University in Stellenbosch I was drowning in ideas and administration. Setting up the social media accounts alone was a mission. Little did I know that running a social media campaign takes days and even weeks of preparation and planning each public post, including the post’s time, target market, outcome goals, and context. Each post on each platform had to be vetted and boosted appropriately. I was genuinely missing the late nights combing through complicated scientific articles and pounding through textbooks.

Making the campaign video was by far the hardest but definitely the most fun part of the process. The hours and hours of footage I have of retakes and drone videos culminated in, what I believe, is the pinnacle of my creative career (which is minuscule).

About a week before the initial launch date, we ran into some red tape within the University. Naturally, as someone who has never done anything more than post a couple photos of rocks on Instagram, I had no idea that a project like this needed to go through a number of stages before being approved by the university (which included: legal, ethics, corporate, marketing, and the faculty itself). A couple of panic-ridden meetings and documents later, we were ready for lift off, although a week later than originally planned.

As a geologist, I am not afraid of hard work, so engulfing myself in learning as much as I could in the little time I had came more naturally. What was most intimidating though, was the thought of putting myself and what I am passionate about out there. Publicly declaring the fact that what I wanted to achieve was not funded was daunting at first, but in time became a revelation in self-awareness and that asking for help is more constructive than admitting defeat.

I believe that postgraduate crowdfunding may prove to be invaluable in the future of students that have all the potential but their projects remain unfunded. Not only does it allow for the financial security of your project, but it attracts people that are interested in your field to you and to your work. The most significant consequence of this crowdfunding approach is that when you graduate, you already have a network of people in the industry that know who you are and know of your potential.

The crowdfunding campaign was completed in early April of 2017. In the next blog I will talk about what worked and what didn’t work, who pledged funding and how did we reach them.

___________________________________________________________

Jared van Rooyen is an MSc student at the University of Stellenbosch in South Africa. His primary field of interest is in isotope hydrology with major applications in groundwater vulnerability and sustainability. Other research interests include postgraduate research funding solutions and outreach as well as scientific engagement with the use of modern media techniques.

 

Check out Jared’s (and research group’s) thundafund  page here.

Of Karst! – short episodes about karst

Of Karst! – short episodes about karst

Episode 2: Dissolving rock? (or, how karst evolves).

Post by Andreas Hartmann, Lecturer in Hydrology at the University of Freiburg (Universität Freiburg), in Germany. You can follow Andreas on twitter at @sub_heterogenty.

Didn’t get to read Episode 1? Click this link here to do so!

___________________________________________________________

In the previous episode, I introduced karst by showing how it looks in different regions in the world. This episode will now deal with the processes that create such amazing surface and subsurface landforms. The widely used term “karstification” refers to the chemical weathering of easily soluble rock composed of carbonate rock or gypsum. Most typical is karstification of limestone (consisting of the mineral calcite, CaCO3) or dolostone (consisting of the mineral dolomite, CaMg(CO3)2). If exposed to CO2 rich water these rocks are dissolved to form aqueous calcium (Ca2+) or magnesium (Mg2+) and bicarbonate (HCO3 ) ions. For calcite, karstification is described by the following chemical equilibrium:

The dissolution of carbonate rock depends on various factors. Imagine a solid block of salt, which you pour water on. If completely solid, the water will flow down the salt surface slowly dissolving the block. If fractured, water will eventually enlarge the fractures in the salt block and dissolution will occur much faster. Now imagine smashing the salt block before pouring water on it. In such circumstances the salt will dissolve even faster as the surface area exposed to the water is much larger.

Karst and its evolution (educational video provided by Jennifer Calva on Youtube).

The same is true for karstification. If the carbonate rock is heavily fractured, it will dissolve faster than unfractured carbonate rock. Another factor is the availability of CO2, that depends on the relative amount of CO2 in the air, air temperature and soil microbiotic processes. Other factors are the purity of the carbonate rock, the availability of water, and the supply of CO2 from the surface. As soon as karstification takes place, more water will be able to pass the dissolution enlarged fractures providing more and more CO2, and creating a positive feedback between rock dissolution and water flow:

Positive feedback between carbonate rock dissolution and water flow (Hartmann et al., 2014, modified).

The hydrochemical processes described in this episode of the Of Karst! Series not only create beautiful karst landscapes but they also have a strong and particular impact on water flow paths in the subsurface, which will the topic of episode 4 that can be expected in early 2018. Before, I will present a special feature about karst in the movies as topic of episode 3 in autumn 2017.

Further reading

Hartmann, A., Goldscheider, N., Wagener, T., Lange, J. & Weiler, M. 2014. Karst water resources in a changing world: Review of hydrological modeling approaches. Reviews of Geophysics, 52, 218–242, doi: 10.1002/2013rg000443.

Ford, D.C. & Williams, P.W. 2013. Karst Hydrogeology and Geomorphology. John Wiley & Sons, 576 pages.

___________________________________________________________

 

 

Andreas Hartmann is a lecturer in Hydrology at the University of Freiburg. His primary field of interest is karst hydrology and hydrological modelling. Find out more at his personal webpage www.subsurface-heterogeneity.com.

 

Groundwater & Education – Part One

Groundwater & Education – Part One

Post by Viviana Re, postdoctoral researcher at the University of  Pavia (Università di Pavia), in Italy. You can follow Viviana on Twitter at @biralnas.

Part one of a two part series on groundwater and education by Viviana.

___________________________________________________________

Education /ɛdjʊˈkeɪʃ(ə)n
The process of receiving or giving systematic instruction, especially at a school or university.

  • from Latin educatio(n-), from the verb educare
  • Educare is a combination of the words e (out) and ducare (lead, drawing), or drawing out.

Based on this definition, I should change the title of this post to: Drawing out groundwater (from the well). This is actually the main occupation of groundwater scientists, isn’t it? Not only are we always withdrawing groundwater from a well or a borehole while sampling, but we also often have to “draw it out” when dealing with managers and policy makers, as sometimes they seem to forget about this hidden (but very important) component of the water cycle. Therefore, we are quite used to these forms of “drawing out” – but what about education? Are we really that effective in “drawing out” groundwater in explaining its peculiarities, issues, and connections within the whole water cycle and, more generally, with the environment?

Indeed, the effort of shedding light on something that is not so visible nor easily studied has the side effect of forcing us to focus solely on it, with a resulting tendency of developing sectorial approaches to water management.

In the preface of a UNESCO Technical paper, I found the following excerpt: “Water resources schemes are now increasingly considered as integrated systems and consequently, civil engineers, geologists, agricultural engineers and hydraulic engineers engaged in planning and design no longer work in isolation”. The document is dated 1974 but, still in 2017, we are somehow struggling to fitting groundwater into Integrated Water Resources Management (IWRM) and to connecting mental and structural “silos”. Quoting Daly (2017), the latter is particularly relevant (especially when education is at stake): if on the one hand, specialization can be the driver for a sound knowledge; on the other hand, this can encourage people to get stuck in their own individual disciplines (or said in other words, their “silos”). Indeed, “silos” exist in their structures, but can also exist as a state of mind that can go hand in hand with tunnel vision (Tett, 2015).

Therefore, in my opinion, the new generation of groundwater scientists (and teachers) should have a new mission: to work (and therefore, to teach) coherently with the integrated and complex nature of the water cycle. In fact, the role of hydrogeologists and groundwater scientists in times of increasing freshwater demand, exacerbated by population growth and climate change effects, requires a serious shift towards a more holistic approach targeting sound groundwater assessment and long-term management.

Arguably, if we are still discussing possible ways of practically implementing this integration, we should definitely start asking ourselves if the the “business as usual” way of working and teaching is effective.  If it is not, we must begin investigating how we can go beyond classical approaches to draw groundwater out of the well.

Playing with kids while sampling … can we call it capacity building?!

 

To be continued …

[Read More]

Research mini-conference in fourth year groundwater class

Research mini-conference in fourth year groundwater class

Fourth year and graduate students led a fun mini-conference during class in Groundwater Hydrology (CIVE 445, Civil Engineering at University of Victoria) yesterday. Local consulting and government hydrogeologists joined, making the students both nervous and excited to be presenting to professionals with up to forty years of groundwater experience. The presentations were the culmination of a term-long independent group research project – they also write a research paper (which is peer-reviewed by their classmates). And the mini-conference culminated in beers at the grad club, unfortunately drinking beer brewed with surface water.

It seemed like a win-win-win for everyone. The students loved meeting and presenting to, and being grilled by, the people who had mapped the aquifer they were modeling or asked if their model is based on any real data. The practitioners loved seeing the new ideas and enthusiasm of the students. And I loved seeing the interaction and learning.

For any prof reading this, here is a description of the Group Research Project and the conference poster:

 

 

 

 

 

What is a hydrogeologist?

What is a hydrogeologist?

Hydrogeologists are a diverse group, in part because we come to this discipline from so many different paths.  We come from different academic programs in engineering, geological sciences and environmental sciences.  These differences in backgrounds create a diversity of perspectives, which enriches hydrogeology and allows for dynamic collaborations.  Engineers and geophysicists are known for bringing quantitative skills to hydrogeology, while geologists shine in problems involving stratigraphy, structural geology and embrace uncertainty.  Geochemists and environmental scientists are often stronger in contaminant hydrogeology.  However, each of these backgrounds also have their deficiencies.  This is underscored by looking at programs in civil engineering and geology, which are two of the most common undergraduate degrees among hydrogeologists. Aside from foundational math and science courses the first years of these programs, they usually only share an elective course in hydrogeology.  A review of hydrogeology courses covered by Gleeson et al. (2012)  showed that aside from a few topics, these courses vary substantially in their content.

 

Hydrogeologists are often found crossing streams wearing ghost-buster backpacks (or so it seems from here)

This is further complicated by how professionals are licensed in many jurisdictions, which is often based on these academic programs rather than whether someone has the capacity to practice hydrogeology.  Engineers are required to have engineering fundamentals in areas such as statics, dynamics, and engineering design, along with competency is areas such as structural and transportation engineering for civil engineering. Geologists receive professional registration based on core competencies in subjects such as mineralogy, sedimentology, paleontology and structural geology.  Registration for fields more closely aligned with hydrogeology, such as environmental geoscience and geological engineering may consider hydrogeology as a core requirement.  In general, this means that somebody registered as a professional engineer or geoscientist might be a hydrogeologist but they also may have very little knowledge of hydrogeology.  Environmental scientists and similar fields might be better prepared to practice hydrogeology in some instances but professional registration is not as common.

Maybe this involves graduate school?  Many practicing hydrogeologists have advanced degrees.  These programs are often designed to give a broad base in hydrogeology and typically deliver material in:

  • physical hydrogeology
  • chemical/contaminant hydrogeology
  • geochemistry
  • numerical modeling
  • field techniques

Additional material on porous media, geotechnical engineering and hydrology are frequently also covered.  Anyone with a background in these areas is probably a hydrogeologist.  However, there are still some grey areas.  Can someone who doesn’t understand numerical models be a hydrogeologist? What about someone who has never done field work?  Where to draw the line is unclear and may differ substantially based on who is asking the question.  However, if the goal is to promote competent practitioners and researchers in hydrogeology, the traditional paths through engineering and geoscience may be less than ideal.  The requirement of knowledge outside hydrogeology at the expense of core knowledge may be holding us back. On the other hand, a great number of us did not enter university with the goal of becoming a hydrogeologist and maybe we need these more traditional programs as gateways.

What most hydrogeologists working really looks like (from here)

Water Underground has a new home on the EGU Network Blogs

Water Underground has a new home on the EGU Network Blogs

The newest addition to the Network Blogs is a groundwater nerd blog written by a global collective of hydrogeologic researchers for water resource professionals, academics and anyone interested in groundwater, research, teaching and supervision.

Water Underground was started, and is currently led, by Tom Gleeson. It is the first blog to be jointly hosted by the EGU Blogs and the AGU blogosphere.

Why not take a look at some the past posts to get a feel for what is to come on the new EGU/AGU blog? You can read about what stalagmites can teach us about past and present climate and what scientists mean by crustal permeability. The advances in groundwater research also feature on the blog. Posts on supervision and teaching will be of interest to Earth scientists at all stages of their career too.

Posts in the blog are contributed by a collective of hydrology experts and reviewed by one of the frequent contributors to help improve style and clarity. Tom, and the contributing authors, want to foster a lively community via the blog, so discussion as well as comments on posts is encouraged. Not only that, if you have something to share, be sure to contact the editorial team as submissions are always welcome! Simply drop them a line at: waterundergroundblog@gmail.com

Here at EGU we are thrilled to have Water Underground join our diverse community of geoscience bloggers. Please join us in welcoming Water Underground to the Network Blogs!

By Laura Roberts,  EGU Communications  Officer

FloPy: A Python interface for MODFLOW that kicks tail!

FloPy: A Python interface for MODFLOW that kicks tail!

Authored by: Kevin Befus – Assistant professor, Department of Civil and Architectural Engineering at the University of Wyoming


Groundwater modeling is getting better. Models are becoming more sophisticated with simpler interfaces to add, extract, and process the data. So, at first appearances, the U.S. Geological Survey’s (USGS) recent release of a Python module named FloPy for preparing, running, and managing MODFLOW groundwater models seems to be a step backwards.

Oh, but it isn’t.

KB1

First, a couple disclaimers. Yes, at the time of writing this I work for the USGS and use this new Python module for my research. Did I have to use FloPy? No. Am I glad I did? YES! Before using FloPy, I dabbled in the various non-commercial MODFLOW interfaces but got bogged down on how many drop down menus, pop-up menus, wizards, and separate plotting programs with their own menus were needed to make a meaningful groundwater model on top of a new lexicon of variable names (IUPWCB must mean “internally unknown parameter with concentrated bacon”, right?).

FloPy made its official debut in February 2016 with a Groundwater methods report 1. Bakker et al. do an excellent job telling us why we should use FloPy. I’ll leave that to you and tell you what I think.

Here’s what is great about FloPy:

  1. FloPy is 100% MODFLOW. No tweaks to anything. You choose the executable file you want it to use or compile it yourself, and you’re off!
  2. You have the near-infinite data management, manipulation, and plotting capabilities of Python at your fingertips. Python has a lot of packages. It can be overwhelming. You can rely commercial packages like ESRI’s arcpy if you want, but there’s a list of free libraries that give you even more freedom to get the input data just right. Since I mentioned freedom, here’s the list of free libraries I find useful but it is in no way an endorsement nor exhaustive: scipy, numpy, gdal, osgeo, fiona, shapely, cartopy, pyshp, pandas, matplotlib, and let’s not forget…flopy!
  3. It’s easy to duplicate and alter an existing model. Once you have your script perfect for running a particular groundwater model, you can take pieces of it to make a slightly altered version, or you can pop it in a loop that runs through your uncertain inputs for sensitivity testing. Change your grid with the flip of a variable, and make sure that mesh converges!
  4. Loading other MODFLOW models works great. Say you want to run someone else’s model with slightly different recharge, but their recharge is variable in space. Since FloPy incorporates numpy’s grid/matrix handling capabilities, you can change individual entries with row-column selections or change the whole recharge grid by multiplying it by either a single number or say a random matrix with a normal distribution and some added noise. If you just want to use their recharge data to run your own model, you can save the position coordinates (they have hopefully provided you with their coordinate system and model transformations) and recharge arrays to your very favorite format (csv, nc, mat, tif) and load it later as a matrix to add to your model, all in a single Python script.
  5. Building off of the ability to load or create MODFLOW models, FloPy has functions for plotting 2D map or cross-section views of the model discretization, boundary conditions, and results. Shapefiles can be included in these plots if they are in the same coordinate system as the model or extracted from the model (ever want a polygon feature of every model cell with attributes for every property of that cell?). I do my own shapefile manipulations in Python, but FloPy has some great plotting tools built in.
  6. You already have the data in Python. See what adding a low permeability layer does to spring discharge. Then, with the model made, you have to make sense of it. Maybe develop some interesting spatial or time series analyses. Enter Python. Plotting with matplotlib also makes beautiful, journal article-worthy figures…with enough sweat and tears from your end (not as many as you may think). Yes, this is a repeat of 2), but, seriously, it’s in PYTHON!
  7. FloPy is totally free. Python is free. Tons of science-oriented libraries in Python are free.

KB2.JPG

Here’s a flashy example.  It is straightforward and only takes one script to create a SEAWAT model from scratch and plot the 2D steady state salinity distribution and flow vectors for a simple Henry 2 problem based on a slightly edited FloPy example script.  There are more than a dozen example scripts available on the FloPy site as well as a very cool capture ratio script provided in the methods report 1.

For the groundwater educators out there, a FloPy groundwater model script can be paired with homework questions that get students testing how changing hydraulic conductivity in certain parts of the model changes the water table configuration. Or maybe a new well needs to be drilled on a plot of land near a spring… The scenarios are endless. Students can develop a fundamental understanding of groundwater flow while getting experience with both groundwater modeling and computer programming. Win, win, and win.

Essentially all of the standard MODFLOW packages are operational in FloPy, and there are varying levels of support for some of the specialized MODFLOW compilations and processing tools (e.g., MODFLOW-USG, MODFLOW-NWT, MT3DMS, SEAWAT, PEST, and MODPATH). PEST and MODPATH are currently not executable with FloPy, but these features will probably be added in a future release (I have made my own klugy modules for running ZoneBudget and MODPATH that interface reasonably well with the rest of FloPy).

Get on your way and give FloPy a try today!


Links

The Python package is available online at https://github.com/modflowpy/flopy.

The documentation is available online at http://modflowpy.github.io/flopydoc/index.html.

The USGS FloPy page is http://water.usgs.gov/ogw/flopy/.


References

Bakker, M., V. Post, C. D. Langevin, J. D. Hughes, J. T. White, J. J. Starn, and M. N. Fienen (2016), Scripting MODFLOW Model Development Using Python and FloPy, Groundwater, doi:10.1111/gwat.12413.

Henry, H.R., 1964. Effects of dispersion on salt encroachment in coastal aquifers. In: Cooper, H.H. (Ed.), Sea Water in Coastal Aquifers: U.S. Geological Survey Water- Supply Paper 1613-C p. C71–C84.


About the author:

Kevin Befus is a groundwater hydrologist with geology and geophysics experience — examining geological, biological, and chemical processes, especially considering their connections to water across scales.

KB3

One hell of a great groundwater textbook now available free

One hell of a great groundwater textbook now available free

‘Groundwater’ the seminar text book from Freeze and Cheery (1979) is free in pdf now…just follow the links here. This text book is almost as old as I am and important parts of modern hydrogeology are rusty or non-existent (like hydroecology amongst other topics) but it is still lucidly written and useful.  I routinely send students to read chapters so I am happy that it is now available free.

Kudos to Pearson Publishing, Alan Freeze and John Cherry and Hydrogeologists without Borders! I look forward to Groundwater2.0 which is in the works!

 

 

The new and exciting face of waterunderground.org

The new and exciting face of waterunderground.org

by Tom Gleeson

I started waterunderground.org a few years ago as my personal groundwater nerd blog with the odd guest post written by others. Since I love working with others, I thought it would be more fun, and more interesting for readers, to expand the number of voices regularly posting. So here is the new face of the blog…

http://www.fragilestates.org/wp-content/uploads/2012/10/collective-action.jpg

a kind of weird image of collective action

What is the new blog all about?

Written by a global collective of hydrogeologic researchers for water resource professionals, academics and anyone interested in groundwater, research, teaching and supervision. We share the following aspirations:

  • approachable groundwater science at the interface of other earth and human systems
  • encourage sustainable use of groundwater that reduces poverty, social injustice and food security while maintaining the highest environmental standards
  • compassionate, effective supervision
  • innovative, effective teaching
  • transparency of scientific methods, assumptions and data

Check out more details and how to be part of the blog on about.

Frequent contributors include:

  • Andy Baker (University of New South Wales, Australia) – caves and karst (I actually visit the water underground!), climate and past climate
  • Kevin Befus (University of Wyoming, United States) – groundwater-surface interactions, coastal groundwater, groundwater age
  • Mark Cuthbert (University of Birmingham, United Kingdom) – groundwater recharge & discharge processes, paleo-hydrogeology, dryland hydro(geo)logy, climate-groundwater interactions
  • Matt Currell (RMIT University, Australia) – isotope hydrology; groundwater quality; transient responses in aquifer systems
  • Inge de Graaf (Colorado School of Mines, United States) – global groundwater withdrawal, flow and sustainability
  • Grant Ferguson (University of Saskatchewan, Canada) – groundwater & energy, regional groundwater flow, sustainability
  • Tom Gleeson (University of Victoria, Canada) – mega-scale groundwater systems and sustainability
  • Scott Jasechko (University of Calgary, Canada) – global isotope hydrology; groundwater, precipitation, evapotranspiration
  • Elco Luijendijk (University of Gottingen, Germany) – paleo-hydrogeology,deep groundwater flow,large scale groundwater systems
  • Sam Zipper (University of Wisconsin – Madison, United States) – ecohydrology, agriculture, urbanization, land use change