WaterUnderground

Research

WTF of the WTF method

WTF of the WTF method

by Tara Forstner, University of Victoria

I recently wrote a term paper for one of my graduate classes on the limitations of the water table fluctuation (WTF) method, and I have to say, WTF!

Techniques using groundwater level fluctuations as a means of calculating recharge are very common. With observation well hydrographs and precipitation data, this method can be applied quite simply, requiring no field work or data collection. Although, this is definitely not the method to end all recharge methods for a number of reasons. As a newbie hydrogeologist studying the WTF method, the application of the method quickly became convoluted based on its limitations and uncertainties.

My term paper focused mainly on the WTF method as described by the classic papers by Healy and Cook (2001), and Cuthbert’s novel estimation of drainage (Cuthbert, 2010) and straight line recession (Cuthbert, 2014).  Here is a list of the three most important things I learned:

  • Developing a good conceptual model of the region is essential for the success of this method, as large uncertainties entail if effects of pumping, proximity to surface water bodies, water table depths, and geology are not considered. With the water table fluctuating based on several factors, it becomes essential to investigate possible influences.
  • The WTF method has two main approaches; (a) to solve for a time series model of recharge, or alternatively, (b) to calculate a long term average recharge value from the groundwater recession constant. The time series approach is best used to observe fluctuations of recharge in response to precipitation over a smaller temporal scale compared to the long term average recharge value calculated from the groundwater recession constant.
  • Simply ‘plugging in’ the values or using computer programs to estimate drainage recession constant could seriously warp the ‘real’ recharge value. Mark Cuthbert mentioned to me in a discussion that he still prints off the hydrographs and often plots the groundwater recession by hand in order to help visualize the groundwater recession before taking a computing approach.

In closing I thought I would share one of my silly ‘WTF!?’ moments and that ‘oooooohhh’ moment that follows once I figured it out. In Healy and Cook (2002), the formula for recharge is written as R = Sy dh/dt, and later in Crosbie (2005) as R = Dh Sy and Cuthbert (2010) as R = Sy dh/dt + D. There are two things that tripped me up with this method. Firstly, the meaning of the symbols R and Dh varies slightly between papers which is easy to miss, and recharge is either calculated as a rate or a value over a specified time. Secondly, the approach in deriving the groundwater recession constant is also different in all three papers, and should be chosen on the basis of the conceptual model.

So alas, the WTF can definitely have it’s ‘WTF!?’ moments, however when the method, possibilities, and limitations are properly understood, this method has the potential of providing a cost effective and non-invasive approach in deriving recharge values.

Deep challenges: China’s ‘war on water pollution’ must tackle deep groundwater pollution pathways

Deep challenges: China’s ‘war on water pollution’ must tackle deep groundwater pollution pathways

by Matthew Currell, School of Engineering, RMIT University, Australia

As part of its recent ‘war on pollution’, the Chinese Central Government released a major policy on water pollution control and clean-up, called the ‘10-point water plan’ in 2015. The plan aims to deal once and for all with China’s chronic water quality problems. China’s water quality deficiencies became widely recognised around the turn of the millennium, following publication of seminal works by Ma Jun, Elizabeth Economy and other local and overseas environmental campaigners. It is now widely acknowledged that chronic exposure to water pollution in China has contributed to the emergence of hundreds of cancer villages, where rates of particular types of cancer that are linked to water pollution far exceed normal population-wide averages. In addition to agricultural pollution and domestic wastewater, in many regions the pollution has resulted from industries that are part of multi-national supply chains, meaning international factors have played an important role.

In a recent review paper published in Environmental Pollution, my colleague Dongmei Han and I compiled data from official Chinese government reports to provide a snapshot of the current status of water quality in China’s major river basins, coastal waters and groundwater systems, including shallow unconfined and deeper confined aquifers (Figure 1). The results are sobering, showing that despite some recent progress, about a third of China’s river monitoring stations and more than 60% of sampled groundwater wells are seriously polluted. These data agree with an internal Ministry of Water Resources report that was briefly made public in early 2016, which showed that more than 80% of the more than 2000 monitored shallow groundwater wells in northern China’s plains areas contain serious pollution and that the aquifers they monitor are unfit to supply drinking water.

Figure 1 – Status of water quality in China based on recent government statistics. a) Surface water, ranked according to the 6-class water quality classification standard. b) Groundwater, ranked using the 5-class system in 6 sub-areas of China, including shallow and deep groundwater. Overall percentages of sampled stations/wells in each water quality class are shown as large pie-charts; percentages in yellow and red on small pie-charts indicate proportion of samples in the lowest two classes (IV & V) for shallow and deep groundwater, respectively. Both maps have been overlain with the locations of known ‘cancer villages’.

In addition to the government data, we also targeted the research literature and compiled as many datasets as possible reporting concentrations of nitrate in shallow and/or deep aquifers throughout China. Compiling these data from over 70 different sources provides greater local detail about the severity of groundwater pollution (Figure 2). We chose nitrate as an ‘indicator pollutant’ because it is widely measured, easy to detect and highly water-soluble. The presence of nitrate in a sample is often an indicator that other pollutants may also be there. The results indicate that all shallow aquifers sampled contain nitrate above the typical natural background level (approximately 1 mg/L nitrate-N or 4.5 mg/L nitrate as NO3 ion), indicating some degree of pollution. Of these 36 aquifers, samples from 25 contained nitrate concentrations exceeding the US EPA maximum contaminant level (MCL) of 10 mg/L nitrate-N. Worryingly, all but one of 37 deep or karst aquifers examined contained nitrate above the background level, while 10 of these aquifers had samples above the MCL. In five of the shallow aquifers and four of the deep aquifers, median nitrate concentrations also exceeded the MCL, meaning half of all wells in the aquifer pump groundwater with nitrate levels exceeding the maximum safe level. We also compiled groundwater stable nitrogen isotope values of the nitrate where they were available. These isotope data help to identify the major sources of nitrate pollution such as chemical fertilizers, soil nitrogen, manure and domestic wastewater, as each potential source can have a unique isotope ‘signature’. Nitrogen isotopes can also provide evidence of microbes breaking down pollution; this is important when considering whether the nitrate will naturally degrade, or if engineered clean-up strategies are required.

Figure 2 – Nitrate concentrations in groundwater from major groundwater systems in China: a) Location map of the 52 study areas from which data were compiled; b) & c) Boxplot distributions of nitrate concentrations (as N) in shallow and deep groundwater throughout China. Boxplots show median, inter-quartile range and 10th and 90th percentile values. Data is compared to the United States Environmental Protection Agency maximum contaminant level (10 mg/L) and a background concentration of 1 mg/L Nitrate-N (equivalent to approximately 4.5 mg/L nitrate as NO3- ion).

Perhaps the issue of greatest concern from our review was the observation that in addition to being ubiquitous in shallow groundwater (as is perhaps expected in areas of intensive agriculture or wastewater pollution), nitrate pollution also frequently appears in deep wells (drilled to >100m below the surface) throughout China. Normally, the time taken for water to reach these confined aquifers is long, and much of the deep groundwater in China has been dated using radio-isotopes, which indicate that it was recharged thousands or tens of thousands of years before the present. The presence of nitrate above natural background levels in these groundwater bodies suggests that pollution is undergoing rapid ‘bypass flow’ (e.g. taking short-cuts) from the surface into deep aquifers.

The Chinese Ministry of Water Resources has made public statements indicating it believes that China’s deep aquifers are safe drinking water sources, isolated from surface pollution effects due to natural geological barriers (called ‘aquitards’ by hydrogeologists). However, our data call into question this assumption. A similar finding was recently made by a group at the Chinese Academy of Sciences, who conducted a geochemical survey of tap water from various sites around Beijing. Most of Beijing’s water supply plants pump from deep groundwater wells around the city. The survey found that a significant number of samples contained nitrate and other pollutants, consistent with our findings that contamination is reaching deep aquifers through short-cut pathways. The most likely explanation is that polluted water is flowing from shallow depths down preferential conduits, such as poorly constructed or badly maintained wells, and bypassing natural geological barriers (Figure 3).

It is estimated that over 4 million wells have been drilled in China’s northern plains alone since the groundwater boom of the 1960s and 1970s. However, only a fraction of these are registered with the government or maintained. Clearly, a program to identify and plug leaking and abandoned wells is needed to stop further pollution of China’s precious deep groundwater reserves.

 

Figure 3 – Mechanism by which faulty wells can allow shallow contaminants to bypass into deep aquifers, compromising water supply safety. China has millions of unregistered wells that may act in this way, and depends on deep aquifers for much of its drinking water.

We hope that our research highlights the scale of China’s water pollution challenges, and can help the public and policy makers better understand the extent and mechanisms of groundwater pollution – a problem which is causing serious human health effects. While addressing the problem of pollution in deep aquifers will be difficult, it is too important a task to ignore, as these aquifers supply drinking water to millions of Chinese people.

References & Further reading

Currell, M.J., Han, D., Chen, Z., Cartwright, I. (2012). Sustainability of groundwater usage in northern China: dependence on palaeowaters and effects on water quality, quantity and ecosystem health. Hydrological Processes 26: 4050-4066.

Currell, M.J., Han, D. (2017). The Global Drain: Why China’s water pollution problems should matter to the rest of the world. Environment: Science and Policy for Sustainable Development 59: 16-29. http://dx.doi.org/10.1080/00139157.2017.1252605

Han, D., Currell, M.J., Cao, G. (2016). Deep challenges for China’s war on water pollution. Environmental Pollution 218: 1222-1233. http://www.sciencedirect.com/science/article/pii/S0269749116310363

Peters, M., Guo Q., Strauss, H., Zhu, G. Geochemical and multiple stable isotope (N, O, S) investigation on tap and bottled water from Beijing, China. Journal of Geochemical Exploration 157: 36-51. http://www.sciencedirect.com/science/article/pii/S0375674215300030

Groundwater and Agriculture: Tapping the Hidden Benefits

By: Sam Zipper, Postdoctoral Fellow, McGill University/University of Victoria

When people think of groundwater in agricultural landscapes, pumping and irrigation are usually the first thing that comes to mind. However, groundwater can have a more subtle but extremely important impact on crop production when we decide to leave it underground:

When there is shallow groundwater beneath an agricultural field, some of the water creeps upwards from the water table, which increases the soil water available in the root zone of crops. This helps areas with shallow groundwater perform better during drought than areas where the water table is deeper, and is known as a ‘groundwater yield subsidy’; however, if soils get too wet, crop roots can’t breathe, which leads to a ‘groundwater yield penalty’:

Figure 1. Diagram showing how shallow groundwater can help or hurt a crop, and how differences in soil texture or weather conditions impact that relationship. Source: Zipper et al. (2015) Water Resources Research

In a recent study, we found that this effect was largest in coarser grained soils, which drain water much more quickly, but the water table had to be very shallow to have a positive effect. Furthermore, as described in the video, the groundwater yield subsidies during dry years were big enough to outweigh the groundwater yield penalties in wet years at the fields in south-central Wisconsin that we were studying. This means that agricultural drainage systems (such as tile drains) which are designed to lower the water table might inadvertently be making crops more vulnerable to drought, even as they improve performance during wet years.

From a broader perspective, this signals that groundwater recharge – which is conventionally thought of as beneficial from a water supply perspective for replenishing depleted aquifers – is not always a good thing:

Figure 2. Impact of groundwater on different ecosystem services. Source: Booth et al. (2016) Ecosystem Services.

Depending on the goal, groundwater can provide an ecosystem service, ecosystem disservice, or both at different times of the year! From a hydrogeology perspective, this means it is important to understand not just how much groundwater recharge is occurring, but how the entire hydrological cycle interacts with ecosystems and the benefits societies derive from them.

Additional videos associated with the project are available on YouTube. These videos were produced by the University of Wisconsin-Madison Water Sustainability and Climate project.

References

Booth EG, SC Zipper, CJ Kucharik, SP Loheide II (2016). Is groundwater recharge always serving us well? Water supply provisioning, crop production, and flood attenuation in conflict in the Yahara River Watershed, Wisconsin, USA. Ecosystem Services, 21, Part A:153-165. DOI: 10.1016/j.ecoser.2016.08.007

Zipper SC, ME Soylu, EG Booth, SP Loheide II (2015). Untangling the effects of shallow groundwater and soil texture as drivers of subfield-scale yield variability. Water Resources Research 51(8): 6338-6358. DOI: 10.1002/2015WR017522.

How did our planet get its water?

How did our planet get its water?

Post by WaterUnderground contributors Elco Luijendijk and Stefan Peters from  the University of Göttingen, in Germany.

After my first ever scientific presentation, someone in the audience asked a question that caught me off guard: “Where does the groundwater come from?”.  “Ehm, from rainfall”, I answered. The answer seemed obvious at the time. However, we did not realize at the time that this is actually a profound question in hydrogeology, and one that is rarely addressed in hydrology textbooks and courses: “How did our planet get its water?”. To find out how far science has come to answering this question I (EL) joined up with a geochemist and meteorite expert (SP) to write this blog post.

We are lucky to live on a planet of which ~71% of the surface is covered with water, located mostly in rivers, lakes, glaciers and oceans at the surface and as groundwater in the shallow subsurface. Liquid water sustains life on our planet and seems to play a critical role in plate tectonics. And incidentally, it also to gives hydrogeologists something to study. Liquid water is so important in sustaining life, that the search for life on other planets in our solar system or beyond always focuses first on finding planets with liquid water.

Not only do we have abundant liquid water, we seem to have just the right amount. Compared to our direct planetary neighbors, Mars and Venus, we are extremely lucky. On the surface of Mars, at present, water mainly occurs as ice, whereas tiny amounts of water vapor are present in the Martian atmosphere. Venus also has minute amounts of water vapor in the atmosphere, but its blazingly hot surface is entirely devoid of water. In contrast to Mars and Venus, some objects in the solar system that are further away actually have too much water. Take for instance Enceladus, a moon of the planet Saturn, at which an icy crust overlies a 10 km deep water ocean. The amount of water on Enceladus is so large that it causes a wobble in the rotation of this moon, which is one of the reasons why this large volume of water was discovered in the first place. Clearly Enceladus is great for ice-skating, but probably not for sustaining land-based life similar to humans.

Figure 1: From left to right, Venus, Earth and Mars. Which one would you like to live on? Source: ESA (link) .

So how did we on Earth get so lucky?

It turns out that this depends on which scientist you ask. There are two theories:
Theory 1: The major building blocks of the Earth contained water from the start. This water then accumulated at the surface of our planet (by “degassing” from the mantle) and formed the oceans and the hydrosphere.
Theory 2: The major building blocks of the Earth were bone dry, and most of the water was delivered by comets and water-rich asteroids some time after most of our planet’s mass had formed by accretion.
So far, scientists do not have reasons to discard either of these theories, but there are two important arguments in favor of water being delivered after most of the planet had already formed:

Earth formed in a hot region of the solar system from which molecules with “low” condensation temperatures such as water had largely been removed before planetary accretion started (Albarède, 2009). Secondly, the ratio of heavy to light water in Earth’s oceans is similar to that of water in some comets and asteroids (Hartogh et al., 2011). Although you may not have noticed this when you last opened your water tap, a very small fraction (0.016 %) of the water on our planet is heavy, because it contains an extra neutron. The similarity in heavy water composition between asteroids and comets and Earth’s oceans does not prove that water on Earth was delivered by comets, but it certainly is consistent with this scenario. To make matters more complicated, however, the recent European space agency mission Rosetta to the water-rich comet 67P/Churyumov–Gerasimenko found that it has a very different ratio of heavy to light water than our oceans, which certainly complicates the debate.

Figure 2 Comet 67P/Churyumov-Gerasimenko losing water (and dust) as it gets closer to the sun. Source: ESA

Interestingly, neither theory can directly explain why our direct planetary neighbors, Mars and Venus, are so dry compared to Earth. So is it possible that these planets once were similar to Earth, and contained more water in their early days than that they do now?

Due to the high surface temperatures at Venus, any liquid water near the surface would immediately evaporate and diffuse into the atmosphere of the planet as a gas. We know that due to the lack of a protective magnetic field on Venus, solar winds continuously erode the atmosphere of the planet. If Venus had abundant water in the past, such erosion by solar winds would therefore have effectively stripped water from the planet’s atmosphere. Similar to Venus, Mars also does not have a protective magnetic field, but the temperatures and pressures at the Martian surface are significantly lower than at Venus’ surface, allowing water to be present at the surface as ice. In fact, Mars may have had a denser atmosphere in the past that allowed liquid water to be present at the surface. Nowadays, erosional features such as channels are the dry witnesses that water indeed once occurred as a liquid on the surface of the planet.

Figure 3. Dry channels (in inverted relief) in the Eberswalde delta on Mars as seen by NASA’s Mars Global Surveyor (link)

As a summary, we have an idea on why our planet was lucky enough to keep large amounts of water compared to Venus and Mars. However, do we know how our planet got its water in the first place? Unfortunately we are still not sure. There is hope though: we keep getting closer to the answer thanks to recent research on the composition of water on our planet and comets and asteroids in the solar system. So stay tuned, there’s a good chance that science will be able to answer this question in the coming years…

References
Hartogh, P. et al. (2011), Ocean-like water in the Jupiter-family comet 103P/Hartley 2, Nature, 478(7368), 218–220.
Albarède, F. (2009). Volatile accretion history of the terrestrial planets and dynamic implications. Nature, 461(7268), 1227-1233.

Crop kites

Crop kites

Post by WaterUnderground contributor Mikhail Smilovic. Mikhail is a PhD  candidate in the Department of Civil Engineering at McGill University, in Quebec.

Crops use water for photosynthesis, absorbing nutrients, and transpiration, or the plant-equivalent of sweating. A crop may experience water-stress if the soil surrounding the roots is not adequately wet, and this stress will affect the crop differently depending on the crop’s stage of growth. Irrigation is the watering of plants to ultimately avoid such water-stress.

Non-irrigated crops are more vulnerable to intervals of dry and hot weather, and the increasing unpredictability of a changing climate will further complicate other crop management tools, such as choosing different cultivars (the particular variety of crop, some which may deal with certain stresses in an improved way) or changing planting dates.

Irrigated crops do not experience water stress (they may in fact experience water stress under a non-perfect irrigation system, but forgive this for now), but the water is necessarily derived from somewhere else. This somewhere else may also experience water withdrawals from municipalities, industry, and other agriculture. The source of water may be underground, or water from a river, lake, or spring, but a connection between both underground and surface waters shares with us that water removed from a system somewhere will have a response somewhere. This somewhere may very well be an ecosystem. Irrigation may also be costly related to the abstraction, transportation, and on-farm distribution.

Between non-irrigated and irrigated is a curious place where we can increase the resiliency of our agricultural systems to periods of drought and heat with limited irrigation, while allowing crops to experience well-timed water stress. Agricultural productivity or yield is determined as the amount of crop produced per area of land, say 3 tons/hectare for wheat. When water is a limiting factor, we would be sensible to also consider water productivity, that is the ratio of crop yield and water use, or, the amount of crop produced per drop of water. The practices of limited irrigation, also known as supplemental or deficit irrigation, makes an effort to increase this water productivity.

This space in-between non-irrigated and irrigated, however, has been often poorly explored or simplified. Crop kites is a novel tool to determine and quantify the potential agricultural and water productivity associated with different irrigation practices. This is important for regions interested in shifting investments into or away from irrigation, as well as for researchers interested in evaluating limited irrigation practices as initiatives to establish food and water security, both currently and with changing climates.

A first thought might be, if a crop uses three quarters of the water than it would under ideal conditions, does the crop produce three quarters as much as the crop under ideal conditions? In fact, the answer depends very much on when this water is used.

Let us take the example of winter wheat in northern Africa. Winter wheat can be broadly characterized into five different growth stages. We can illustrate water use throughout the season with the following figure:

Water use is represented by the bottom blue colour, and the associated deficit is represented with the upper orange colour – the top line of the shape is the amount of water the crop would use under ideal conditions on the associated day. This example shows a 0, 10, 20, 30, and 40% deficit occurring in stages 1 to 5 respectively, representing a 78% water use across the entire growing season as compared to ideal conditions. Understanding both the amount of water used and when the water was used, we are able to determine the associated yield, for this example, we reach 68% of potential yield.

Now, what if we were to simulate the yield using all reasonable water uses and all reasonable distributions of the timing of this water use? The resulting shape is our crop kite, with each point associated with a water use distributed throughout the growing season in a particular way:

 

This shape illustrates the incredible range of yields associated with each water use; for example, 80% of potential water use relates to between ~20 and 90% of potential crop yield.

Water distributed through canals are often delivered according to a schedule, and not necessarily related to growth-stage sensitivities or actual weather. From the crop kite we can derive estimates on how the crop yield will be affected by adopting certain irrigation schedules. We elaborate on this with three examples: S1) water use is distributed to optimize yield, S2) the deficit is distributed evenly across all growth stages, S3) water is used preferentially for the earlier growth stages. The resulting crop-water production functions are illustrated in the following figure:

 

Although the first schedule optimizing for crop yield may be in line with the motivations of the irrigating farmer, it is often an unreasonable assumption for farmers delivered water according to predetermined schedules, but may be appropriate for farmers irrigating with a privately owned well. Evaluating the potential of supplemental irrigation necessitates estimating the ability of farmers to manage both the amount and timing of irrigation applications. Otherwise, non-reasonable assumptions may be used to evaluate and over promise estimates for agricultural production, with the fault not in the practice of limited irrigation, but in the criteria used to evaluate the system.

Crop kites demonstrate the wide range of water use-crop yield relationships, and can be used to evaluate the potential of limited irrigation to shift both food and water security.

 

Mikhail Smilovic is a PhD candidate at McGill University and the University of Victoria . Mikhail’s work investigates the interplay between foot security, water resources, and energy, and evaluating and integrating initiatives that increase agricultural production while reducing demands on water resources.

Limits to global groundwater use

Limits to global groundwater use

Post by WaterUnderground contributor Inge de Graaf. Inge is a postdoc fellow at Colorado School of Mines, in the USA.

Groundwater is the world’s most important source of freshwater. It supplies 2 billion people with drinking water and is used for irrigation of the largest share of the world’s food supply.

However, in many regions around the world, groundwater reserves are depleting as the resource is being pumped faster than it is being renewed by rain infiltrating through the soil. Additionally, in many cases, we are still clueless about how long we can keep drawing down these water reserves before groundwater depletion will have devastating impacts on environmental and socio-economic systems. Indeed, these devastating effects are already being observed.

The most direct effect of groundwater depletion is the decline in groundwater levels. As a direct impact, groundwater-pumping cost will increase, so too will the cost of well replacement and the cost of deepening wells. One of the indirect consequences of declining water levels is land subsidence, which is the gradual sinking of the surface. In many coastal and delta cities, increased flooding results in damages totaling billions of dollars per year. Next to this, declining groundwater levels lead to a decrease in groundwater discharge to rivers, wetlands, and lakes, resulting in rivers running dry, wetlands that are no longer sustained, and groundwater-dependent ecosystems that are harmed.

Over the past decades, global groundwater demands have more than doubled. These demands will continue to increase due to population growth and climate change.

The increase in demands and the aforementioned negative effects of groundwater depletion raise the urgent question: at what time in future are the limits to global groundwater use reached? This is when and where groundwater levels drop to a level where groundwater becomes unattainable for abstraction, or that groundwater baseflows no longer sustain river discharges.

In my PhD research, I predicted where and when we will reach these limits of groundwater consumption worldwide. I defended my dissertation last year April at Utrecht University, in the Netherlands.

Where and when are the limits reached?

Results show that many large aquifer systems are already highly depleted, especially for intensively irrigated areas in dryer regions of the world, like India, Pakistan, Mid West USA, and Mexico (see Figure 1). New areas experiencing groundwater depletion will develop in the near future, such as Eastern Europe and Africa. Future predictions show that some areas, like the Central Valley, and the High Plains Aquifer, partly recover when more recharge will becomes available. Notwithstanding, environmental groundwater demands will increase as to buffer more irregular streamflow occurrences due to climate change.

Figure 1: Estimated groundwater depletion (1960-2010) in [m], masked for aquifer areas, and zooms for hotspot regions, which are the intensively irrigated regions of the world.

In 2010, about 20% if the world population lived in groundwater depleted regions, where groundwater dropped below the economical exploitable limit. As a rule of thumb: the economic limit is reached when groundwater becomes unattainable for a local farmer, which is approximately when the water level drops to 100 m below the surface. In 2050, 26% to 36% of the world’s population will live in areas where the economic exploitable limit is reached (see Figure 2). Evidently, this persistence and increasing level of groundwater stress will impair local development and generate tension within the global socio-economic system.

Figure 2: First time that groundwater falls below the 100m limit.

 

Global-scale simulations

To answer my main question, I studied the effects of groundwater abstractions on river low flows and groundwater levels worldwide, as well as which trends in river low flow frequency and groundwater level change can be attributed to groundwater abstractions.

I used a newly developed physically based surface water-groundwater model to simulate i.a. river flows, lateral groundwater flow, and groundwater-surface water interactions at a high resolution (approx. 10×10 km) at the global scale. Total water demands were estimated and account for agricultural, industrial, and domestic demands. I simulated groundwater and surface water abstractions based on the availability of the resource, making the estimate reliable for future projections under climate change and for data-poor regions where we do not know how much groundwater or surface water is abstracted. Next, I developed a global-scale groundwater model. I estimated alluvial aquifer thickness worldwide, as no data at the global scale is available (see Figure 3). Aquifer thickness is one of the parameters you need to estimate groundwater flow and storage.

Figure 3: Estimated alluvial aquifer thickness. White areas are mountain regions, where no aquifers are simulated.

Simulations were done for the recent past and near future (1960-2050) and the results include maps and trends of groundwater heads, groundwater fluctuations, and river discharges.

In conclusion, most of our water reserves are hidden underground and most of our groundwater abstractions rates exceed groundwater renewing rates, leading to depletion. The growing demand and the expected climate change bring our groundwater reserves under mounting pressure. More than two-thirds of all abstracted groundwater is used for food production. Every year the world’s population is growing by 83 million people.

Improving our knowledge about how much water we can use in the near future while avoiding negative environmental and socio-economic impacts is therefore extremely important. A study like this contributes to the knowledge gap and can help guide towards sustainable water use worldwide to overcome potential political water conflicts and reduce potential socio-economic friction, as well as to secure future food production.

Want to read more? Check out the recent AGU press release or if you have more time… read my papers on dynamic water allocation (click here), development of a global groundwater model (click here, or here), or read my PhD thesis (here).

 

Author Inge de Graaf receiving her PhD degree from her advisor, professor Marc Bierkens (at Utrecht University, Netherlands). Note Tom Gleeson’s bald head in the lower left…

Water Underground has a new home on the EGU Network Blogs

Water Underground has a new home on the EGU Network Blogs

The newest addition to the Network Blogs is a groundwater nerd blog written by a global collective of hydrogeologic researchers for water resource professionals, academics and anyone interested in groundwater, research, teaching and supervision.

Water Underground was started, and is currently led, by Tom Gleeson. It is the first blog to be jointly hosted by the EGU Blogs and the AGU blogosphere.

Why not take a look at some the past posts to get a feel for what is to come on the new EGU/AGU blog? You can read about what stalagmites can teach us about past and present climate and what scientists mean by crustal permeability. The advances in groundwater research also feature on the blog. Posts on supervision and teaching will be of interest to Earth scientists at all stages of their career too.

Posts in the blog are contributed by a collective of hydrology experts and reviewed by one of the frequent contributors to help improve style and clarity. Tom, and the contributing authors, want to foster a lively community via the blog, so discussion as well as comments on posts is encouraged. Not only that, if you have something to share, be sure to contact the editorial team as submissions are always welcome! Simply drop them a line at: waterundergroundblog@gmail.com

Here at EGU we are thrilled to have Water Underground join our diverse community of geoscience bloggers. Please join us in welcoming Water Underground to the Network Blogs!

By Laura Roberts,  EGU Communications  Officer

Socio-hydrogeology: bridging the gap between science and society

Socio-hydrogeology: bridging the gap between science and society

Authored by Viviana Re, Marie Curie Research Fellow at Ca’ Foscari University of Venice, Italy


Sustainability, integrated water resources management, climate change, groundwater governance. These are some of the currently trending topics in hydrogeology, as reflected by their widespread use as keywords in recently published literature. Indeed, hydrogeologists are at the forefront of guaranteeing the long-term sustainability of aquifers worldwide. But how can they assure that the outcomes of their investigations are really translated into effective science-based management practices? How can they make sure that their work really reaches water end-users and all those eventually affected by new water quality and quantity control measures?

Possibly the most effective way is to commit themselves to bridging gaps between science and society.

This is the aim of “socio-hydrogeology”, a new approach to groundwater investigations promoting the incorporation of the social dimension into hydrogeological studies willing to provide management practices with better support (Re, 2015).

Socio-hydrogeology proposes the coupling of robust hydrogeological investigations with a more comprehensive assessment of the socio-economic implications of the (ground)water problems in question. In agreement with the general definition of socio-hydrology—the science of people and water (Sivapalan et al. 2011)—socio-hydrogeology aims not only at studying the mutual relations between people and groundwater (i.e. the impact of human activities on the baseline characteristics of an aquifer and the impact of groundwater—its quality, its presence and scarcity—on human well-being and life), but more generally to include social dimensions in hydrogeological investigations. This means ensuring that the results of scientific investigations are not only based on real needs and local knowledge, but are also adequately disseminated to groundwater users .

Hydrogeologists can be leaders in socio-hydrogeology. They can advocate for groundwater management and protection. They can promote bottom-up approaches that embed local know-how into management strategies. As many hydrogeologists spend substantial time in the field, they are generally the first point of contact for well holders, farmers and other groundwater users. They may therefore act as mediators between theory and practice, or between the problem and the (potential) proposed solution to issues of sustainability and pollution. This is why allocating specific time to structured interaction with the relevant stakeholders and water users prior to and during hydrogeological investigations, they can maximize the use of hydrogeological information and outcomes, which are obtained, in the best cases, with the best available technology and tools.

re_1

Socio-hydrogeology in practice:  in situ measurements and interviews with farmers (Cap Bon, Tunisia; Viviana Re, 2014)

This newly established field allows hydrogeologists to focus on mutual relations between groundwater and society and to foster both ‘horizontal’ (e.g. between state and non-state actors or across sectors such as agriculture or energy) and ‘vertical’ (between various levels) cooperation. This novel approach presents a standardized baseline method focused around hydrogeologists, which is easy to understand, flexible, not too time-consuming, and offers the chance to implement preliminary public engagement with limited effort.

re_2

Discussions about water issues with farmers near Grombalia, Tunisia (Viviana Re, 2014).

In this framework, the Bir Al-Nas (Bottom-up IntegRated Approach for sustainabLe grouNdwater mAnagement in rural areaS*) approach is proposed as an initial attempt to put the concept of socio-hydrogeology into practice through hydrogeological and social analysis, the latter performed by means of a social network analysis and structured interviews with the people involved in the groundwater monitoring network. Bir Al-Nas is currently being tested and implemented in the Grombalia Basin (Tunisia), chosen as representative of the issues shared by most of the coastal aquifers in arid/semi-arid regions (i.e., aquifer pollution and salinization, water overexploitation, saline-water intrusion, and agricultural return flow).


*Research supported by a Marie Curie International Outgoing Fellowship within the EU 7th Framework Programme for Research and Technological Development (FP7-PEOPLE-2012-IOF, project reference 327287).

 –Featured image by Chiara Tringali (2014)

FloPy: A Python interface for MODFLOW that kicks tail!

FloPy: A Python interface for MODFLOW that kicks tail!

Authored by: Kevin Befus – Assistant professor, Department of Civil and Architectural Engineering at the University of Wyoming


Groundwater modeling is getting better. Models are becoming more sophisticated with simpler interfaces to add, extract, and process the data. So, at first appearances, the U.S. Geological Survey’s (USGS) recent release of a Python module named FloPy for preparing, running, and managing MODFLOW groundwater models seems to be a step backwards.

Oh, but it isn’t.

KB1

First, a couple disclaimers. Yes, at the time of writing this I work for the USGS and use this new Python module for my research. Did I have to use FloPy? No. Am I glad I did? YES! Before using FloPy, I dabbled in the various non-commercial MODFLOW interfaces but got bogged down on how many drop down menus, pop-up menus, wizards, and separate plotting programs with their own menus were needed to make a meaningful groundwater model on top of a new lexicon of variable names (IUPWCB must mean “internally unknown parameter with concentrated bacon”, right?).

FloPy made its official debut in February 2016 with a Groundwater methods report 1. Bakker et al. do an excellent job telling us why we should use FloPy. I’ll leave that to you and tell you what I think.

Here’s what is great about FloPy:

  1. FloPy is 100% MODFLOW. No tweaks to anything. You choose the executable file you want it to use or compile it yourself, and you’re off!
  2. You have the near-infinite data management, manipulation, and plotting capabilities of Python at your fingertips. Python has a lot of packages. It can be overwhelming. You can rely commercial packages like ESRI’s arcpy if you want, but there’s a list of free libraries that give you even more freedom to get the input data just right. Since I mentioned freedom, here’s the list of free libraries I find useful but it is in no way an endorsement nor exhaustive: scipy, numpy, gdal, osgeo, fiona, shapely, cartopy, pyshp, pandas, matplotlib, and let’s not forget…flopy!
  3. It’s easy to duplicate and alter an existing model. Once you have your script perfect for running a particular groundwater model, you can take pieces of it to make a slightly altered version, or you can pop it in a loop that runs through your uncertain inputs for sensitivity testing. Change your grid with the flip of a variable, and make sure that mesh converges!
  4. Loading other MODFLOW models works great. Say you want to run someone else’s model with slightly different recharge, but their recharge is variable in space. Since FloPy incorporates numpy’s grid/matrix handling capabilities, you can change individual entries with row-column selections or change the whole recharge grid by multiplying it by either a single number or say a random matrix with a normal distribution and some added noise. If you just want to use their recharge data to run your own model, you can save the position coordinates (they have hopefully provided you with their coordinate system and model transformations) and recharge arrays to your very favorite format (csv, nc, mat, tif) and load it later as a matrix to add to your model, all in a single Python script.
  5. Building off of the ability to load or create MODFLOW models, FloPy has functions for plotting 2D map or cross-section views of the model discretization, boundary conditions, and results. Shapefiles can be included in these plots if they are in the same coordinate system as the model or extracted from the model (ever want a polygon feature of every model cell with attributes for every property of that cell?). I do my own shapefile manipulations in Python, but FloPy has some great plotting tools built in.
  6. You already have the data in Python. See what adding a low permeability layer does to spring discharge. Then, with the model made, you have to make sense of it. Maybe develop some interesting spatial or time series analyses. Enter Python. Plotting with matplotlib also makes beautiful, journal article-worthy figures…with enough sweat and tears from your end (not as many as you may think). Yes, this is a repeat of 2), but, seriously, it’s in PYTHON!
  7. FloPy is totally free. Python is free. Tons of science-oriented libraries in Python are free.

KB2.JPG

Here’s a flashy example.  It is straightforward and only takes one script to create a SEAWAT model from scratch and plot the 2D steady state salinity distribution and flow vectors for a simple Henry 2 problem based on a slightly edited FloPy example script.  There are more than a dozen example scripts available on the FloPy site as well as a very cool capture ratio script provided in the methods report 1.

For the groundwater educators out there, a FloPy groundwater model script can be paired with homework questions that get students testing how changing hydraulic conductivity in certain parts of the model changes the water table configuration. Or maybe a new well needs to be drilled on a plot of land near a spring… The scenarios are endless. Students can develop a fundamental understanding of groundwater flow while getting experience with both groundwater modeling and computer programming. Win, win, and win.

Essentially all of the standard MODFLOW packages are operational in FloPy, and there are varying levels of support for some of the specialized MODFLOW compilations and processing tools (e.g., MODFLOW-USG, MODFLOW-NWT, MT3DMS, SEAWAT, PEST, and MODPATH). PEST and MODPATH are currently not executable with FloPy, but these features will probably be added in a future release (I have made my own klugy modules for running ZoneBudget and MODPATH that interface reasonably well with the rest of FloPy).

Get on your way and give FloPy a try today!


Links

The Python package is available online at https://github.com/modflowpy/flopy.

The documentation is available online at http://modflowpy.github.io/flopydoc/index.html.

The USGS FloPy page is http://water.usgs.gov/ogw/flopy/.


References

Bakker, M., V. Post, C. D. Langevin, J. D. Hughes, J. T. White, J. J. Starn, and M. N. Fienen (2016), Scripting MODFLOW Model Development Using Python and FloPy, Groundwater, doi:10.1111/gwat.12413.

Henry, H.R., 1964. Effects of dispersion on salt encroachment in coastal aquifers. In: Cooper, H.H. (Ed.), Sea Water in Coastal Aquifers: U.S. Geological Survey Water- Supply Paper 1613-C p. C71–C84.


About the author:

Kevin Befus is a groundwater hydrologist with geology and geophysics experience — examining geological, biological, and chemical processes, especially considering their connections to water across scales.

KB3

Protecting springs from groundwater extraction: is a ‘drawdown trigger’ a sensible strategy?

Protecting springs from groundwater extraction: is a ‘drawdown trigger’ a sensible strategy?

By Matthew Currell – Senior Lecturer at RMIT University

Springs, some of which have been flowing for hundreds of thousands of years, have been disappearing in Australia due to human water use over the past century. Following a hotly contested court case, Australia’s Environment Minister imposed a 20cm ‘drawdown limit’ at a set of springs, to protect them from a proposed coal mine. However, this ignores a fundamental principle of hydrogeology, known as ‘capture of discharge’ and as a result, the springs may still be under threat.

Why are springs important?

Springs are a groundwater system’s gift to the surface.  They provide a constant source of water to the landscape throughout the year, and many have been doing so for millenia. This is why they are often of great importance to indigenous people and why they play an important part in the history of human settlements. Springs also provide valuable ecological refuges in dry landscapes and are often home to endemic species. However, springs are vulnerable to the effects of groundwater extraction.

The disappearing springs of the Great Artesian Basin

Recently, a group of Australian ecologists and hydrogeologists published a study of ‘lost springs’ that have disappeared from the Australian landscape since European settlers began drilling for water and minerals in the Great Artesian Basin (GAB) – the world’s largest artesian aquifer system (the term ‘artesian’ means that when a wellbore intersects one of the aquifers, groundwater flows freely to the surface, often gushing meters up into the air). Groundwater in the Great Artesian Basin travels many hundreds of kilometres across the Australian continent, before surfacing as clusters of springs, which provide life in otherwise dry landscapes (Figure 1). Research by colleagues of mine estimates that some of these springs have been discharging water (at variable rates) for hundreds of thousands of years.  This is based on dating the minerals that have been continuously precipitating at the spring outlets over geologic time. The drilling of wells in the Great Artesian Basin began in the late 1800s and was encouraged by governments, as a way to ‘open up the landscape’ for further white settlement into the country’s harsh, arid interior. Many of these artesian bores were allowed to flow freely for decades (some are still uncapped), leading to major declines in groundwater pressures throughout the Great Artesian Basin. Sadly, this has also caused many springs to disappear.

Great_Artesian_Basin

Figure 1 – Map of Australia’s Great Artesian Basin, which covers four states, showing the major areas of groundwater recharge and discharge, where springs emerge at the surface.  Source: ABC Science: http://www.abc.net.au/science/articles/2012/04/04/3470245.htm

Recent threats to springs from mining

More recently, another human activity threatens springs – mining. In particular, parts of Australia have recently experienced a boom in coal seam gas and large coal mining proposals. Large volumes of groundwater must be pumped from the aquifers above and adjacent to the coal and gas deposits to allow them to be mined. Extracting groundwater for mining means that some water that could otherwise reach the surface at springs is re-directed towards the gas wells or mine pits.  Figure 2 shows a map of oil and gas exploration and production permits that currently cover the Great Artesian Basin. Many of these are yet to be developed but would involve significant groundwater extraction.

Great_Artesian_Basin2

Figure 2 – Map of the Great Artesian Basin showing active oil and gas leases. From: SoilFutures Consulting, (2015): Great Artesian Basin Recharge systems and extent of petroleum and gas leases (2nd ed)

Recently, a major international company has also proposed the largest coal mine in Australia’s history – the Carmichael Coal Mine & Rail Project. Within 10 kilometres of the proposed mine site is a group of Great Artesian Basin springs – the Doongmabulla Springs. These springs are an ecological refuge, providing an oasis of green in an otherwise dry landscape (as can be seen in drone footage here: https://www.youtube.com/watch?v=RglMko3GwQA). The springs are of high cultural and ecological significance to the local Indigenous Wangan and Jagalingou people, and for this reason (among others) these people are strongly opposed to the mine.

Colleagues of mine recently participated in a hotly contested court case, arguing over whether or not the Carmichael Mine poses a threat to the survival of the Doongmabulla Springs – recognised by the Land Court judge as having ‘exceptional ecological significance’. The argument centred on whether or not the springs are fed by water from the same group of aquifers that will be excavated and de-watered by mining, or shallower aquifers. Ultimately, the Court decided that the mine was unlikely to pose an imminent threat to the springs, and upheld the environmental authority that was earlier granted by the Australian Government. This was in spite of testimony of some expert hydrogeologists that the most likely explanation for the springs is a fault that brings deep groundwater to the surface (more about the case and the mine can be read here).

Protection of Great Artesian Basin Springs

In Australia, the native flora and fauna supported by Great Artesian Basin springs are protected under the country’s highest piece of environmental legislation – the Environment Protection and Biodiversity Conservation Act (1999). This recognises the extraordinary level of endemism in these spring systems – many support species that are found in a single spring pool or group of springs, and nowhere else on earth. If a mining project is located in an aquifer that supports ‘GAB Springs’, the Act specifies that the Environment Minister must impose conditions to protect the springs’ water source. The mining company must then develop a monitoring and management plan, and a set of contingency measures to ensure impacts can be minimised.

In order to protect the Doongmabulla Springs from potential impacts of the Carmichael mine, the Environment Minister chose to apply a drawdown limit or ‘trigger’ level of no more than 20cm, stating:

“I took a precautionary approach by imposing a drawdown limit of 20 cm at the Doongmabulla Springs Complex (condition 3d), to ensure that there are no unacceptable impacts to the springs”

Problems with a drawdown ‘trigger’ to protect springs

Limiting drawdown to 20cm at a spring may sound like a strict criterion to ensure minimal impact from groundwater extraction (as this is a relatively small change in the water level). However, the approach has a number of pitfalls, as I recently outlined in a technical commentary in an article for the journal Groundwater.

The drawdown ‘trigger’, applied at the springs themselves, ignores one of the fundamental principles of hydrogeology, which is that groundwater extraction affects aquifers in two major ways; firstly through depletion of water in storage, and secondly through capture of discharge. All groundwater and surface water systems are subject to a ‘water budget’, whereby an increase in extraction at one point leads to a corresponding decrease in water stored or water available somewhere else. It has long been recognised that when groundwater extraction begins, there is generally a period in which storage depletion – shown by declining groundwater levels in the aquifer near the extraction point – is the dominant effect. However, in the long-term, extraction is balanced mostly by a decrease in the discharge reaching the surface. It is the ‘capture of discharge’ which is the most important effect to consider when protecting springs from pumping – as spring water is entirely composed of groundwater discharge. Unfortunately, this ‘capture’ is not well predicted by monitoring the amount of drawdown, particularly at the point of discharge itself.

As Figure 3 below demonstrates, it is quite possible for a spring (or a gaining stream) to experience minimal drawdown, but for the flow of water from the aquifer to the surface to decrease or even cease entirely. For this reason, by the time 20cm of drawdown has been noticed at the Doongmabulla Springs – which are located about 8 kilometres from the mine site – it is likely that the flow directions and water budget will have been fundamentally changed, and possible that the springs may ultimately cease to flow, as has occurred in many other parts of the Great Artesian Basin.

fig3

Figure 3 – Example of how groundwater levels change during groundwater extraction.  Drawdown may be small at a spring or stream until it is too late (fr: Currell, 2016).

Alternative approaches to management and protection of springs

It can be argued that the setting of a drawdown ‘trigger’ at a spring or stream is a classic case of ‘reactive’ environmental management, whereby management action is taken only in response to an impact when or after it takes place. Because of the relatively high level of uncertainty in most hydrogeological systems, the time-lags that occur between an activity such as pumping and the hydrological response, and the difficulty in directly observing groundwater behaviour, a pro-active approach to monitoring and managing impacts from mining and other activities is needed. As I argue in the technical commentary, a far more effective approach to springs protection would include a program to understand the source aquifer for the springs, an assessment of the water budget before and after the mining development (through modelling), and a monitoring program that maps out water level patterns and flow directions in the aquifer(s) regularly through time and also monitors flow rates at the springs. These activities should be undertaken up-front during the environmental impact assessment. If ‘trigger’ levels are to be used as an effective management tool,  these should be set as specified water levels at a series of points set back some distance from the springs, to identify negative effects before they reach the springs.

While this may sound onerous for the mining company, the importance of the springs to the indigenous people and ecological environment means that it is worth making the effort to use the best hydrogeological science possible to protect them.

Bonus Figures
bonus1

Artesian well in the Great Artesian Basin providing a constant flow of hot water. (Source: Wikipedia commons)

bonus2

Evidence of springs that have gone dry, from sites in Australia’s great Artesian Basin.  From: Fensham, R. et al., 2015 In search of lost springs: a protocol for locating active and inactive springs. Groundwater Volume 54, Issue 3, pagese 374-383, 5 October 2015 DOI: 10.1111/gwat12375 (link)

Follow

Get every new post on this blog delivered to your Inbox.

Join other followers: