GeoLog

tectonics

Imaggeo on Mondays: Tones of sand

Tones of Sand

With rocks dating as far back as the Precambrian, mountain building events, violent volcanic eruptions and being covered, on and off, by shallow seas, Death Valley’s geological history is long and complex.

Back in the Cenozoic (65 to 30 million years ago), following a turbulent period which saw the eruption of volcanoes (which in time would form the Sierra Nevada of California) and regional uplift, Death Valley was a peaceful place. There was no deposition of sediments, nor emplacement of igneous rocks. The valley was being eroded, slowly.

Fast forward a few thousand years, to the Miocene (ca. 27 million years ago) and all that changed. New volcanic eruptions drove the onset of a major extensional event, which saw basins and ranges develop into Death Valley as we know it today.

The tectonics of the region were also complex: the North American plate was riding up and over the Pacific plate, but around the same time as the extension started in the basin, the spreading centre of the Pacific plate intersected with the Fallon Plate, splitting it in half. The northern section became the Juan de Fuca plate and the San Andreas Fault was created between the remnants of the subduction zone.

The Panamint Range – a fault-block mountain range on the edge of the Mojave Desert – formed as a result of the powerful tectonic events. Initially, it rode over and piggy backed on top of The Black Mountains, before sliding towards the west.  As the mountain ranges slid apart, the valleys lost height too and started receiving sediment.

The sediment influx happens to this day, as evidenced in today’s Imaggeo on Monday’s photograph, taken by Marc Girons Lopez, a hydrologist at Uppsala University (Sweden).

“The photograph was taken from Dante’s View viewpoint terrace and shows the Death Valley on the foreground and the Panamint Range on the background,” describes Marc.

At present, a series of alluvial fans drain the Panamint Range, forming triangle-shaped deposits of gravel, sand and silt. These fans are formed through the deposition of sediments eroded from the Panamint Range during flash flood events.

Marc says that “the colour of the sand forming the alluvial fans relates to their age; the clearer the tones the younger their age.”

The salt flats in the foreground, which are covered in salt and other minerals, are the remnants of Lake Manly, a landlocked lake system which drained to no other bodies of water such as rivers or oceans. The lake was present during the Pleistocene era (2.85 million years ago) and slowly evaporated as the region progressively desertified. The evaporitic salts have been exploited in modern times.

 

If you pre-register for the 2017 General Assembly (Vienna, 22 – 28 April), you can take part in our annual photo competition! From 1 February up until 1 March, every participant pre-registered for the General Assembly can submit up three original photos and one moving image related to the Earth, planetary, and space sciences in competition for free registration to next year’s General Assembly!  These can include fantastic field photos, a stunning shot of your favourite thin section, what you’ve captured out on holiday or under the electron microscope – if it’s geoscientific, it fits the bill. Find out more about how to take part at http://imaggeo.egu.eu/photo-contest/information/.

Imaggeo on Mondays: Mola de Lord

Imaggeo on Mondays: Mola de Lord

From the easterly Atlantic waters of the Bay of Biscay to the Catalan wild coast (Costa Brava) in the west, the Spanish Pyrenees stretch 430 km across the north of the country. At the foothills of the Catalan Pyrenees you’ll find the Pre-Pyrenees. Despite not reaching the soaring heights of the peaks of the Pyrenees, they nonetheless offer important insights into the geology of the range and stunning panoramas, such as the one featured as today’s Imaggeo on Mondays image. In today’s post, Sarah Weick, a researcher at the Georg August University in Göttingen, explains why the foothills of the mountain belt are a structural geologist’s playground.

The picture was taken from the top of the flat-topped mountain ‘Mola de Lord’, with a beautiful view over the turquoise-blue water of the river Cardener and growth folds, characterised by a significant increase in throw with depth, caused by their syn-sedimentary development The over 1000 m-high mountain belongs to Vall de Lord, close to the Sant Llorenc Growth Structure, formed of folded sedimentary rocks of marine and continental origin that developed from Eocene to Oligocene and display local angular unconformities (where horizontally parallel sedimentary rocks are deposited atop previously tilted layers). Moreover, it is excellently preserved as a structure in the footwall of the Pyrenees and helps to understand how sedimentary deposits are reorganized during the development of a syn-sedimentary growth structure and how they may distribute between the foreland basin and the mountain belt. Outcrops on the mountain top are of conglomeratic composition with clasts and fossilized nummulites – lense-shaped single-celled sea creatures with shells that lived from Paleocene to Oligocene.

As a geologist, Mola de Lord is not the only remarkable location in Catalonia. On a greater scale, the table mountain belongs to the Spanish Pyrenees. There, hikers can experience parts of untouched nature, and witness the mountain’s geological past: from eroded carbonate karsts with unique shapes to the Ebro basin.

The Pyrenees are located in southwest Europe on the border between France and Spain. The Upper Cretaceous to Miocene collision and subduction of the Iberian microplate under the European plate initiated the orogeny, which went through two main phases. The tectonic changes during the Alpine Orogeny that started 66 Ma ago and some earlier Jurassic activity, caused a compressive regime and thus produced a lot of pressure that caused folding on different scales and the continuing orogenic growth. Deformation occurred also after the collision. The orogenic basement can be described by inherited folded formations over a granitic basement.

 By Sarah Weick, researcher at the Georg August University in Göttingen.

 

Imaggeo is the EGU’s online open access geosciences image repository. All geoscientists (and others) can submit their photographs and videos to this repository and, since it is open access, these images can be used for free by scientists for their presentations or publications, by educators and the general public, and some images can even be used freely for commercial purposes. Photographers also retain full rights of use, as Imaggeo images are licensed and distributed by the EGU under a Creative Commons licence. Submit your photos at http://imaggeo.egu.eu/upload/.

Imaggeo on Mondays: Dragon Blood Tree

Imaggeo on Mondays: Dragon Blood Tree

On a small and isolated island in the Indian Ocean you’ll find an endemic population of Dragon Blood Trees (Dracaena cinnabari). Burly, with an interesting umbrella-shaped fractal canopy, these unique trees are a sight to behold.

To see them for yourself, you’ll have to travel to the little known Socotra archipelago. Off the coast of Somalia, but belonging to Yemen, the group of islands boast an impressive assortment of endemic plant life, making them know as the ‘Galapagos of the Middle East’.

Crucial to the uniqueness of the flora and fauna of the archipelago is Socotra’s geographical position and how it came to be there. The African plate extends out from the Horn of Africa, east of the Guardafui graben, in what is known as the Socotra Platform. Here you’ll find four islands, of which Socotra is the largest, as well as two scars of former islands which have been eroded away by wave action.

At in excess of 240 kilometres east of the Horn of Africa and 380 kilometres south of the Arabian Peninsula there is no getting away from the remoteness of the archipelago. Testament to this is the presence of seven endemic bird species on the island.

So how did the strange looking Dragon Blood Tress and other flora and fauna come to populate Socotra and its neighbours?

It is thought that until 43 million years ago, the Socotra archipelago remained largely submerged. Although there were some brief emergence events during the Jurassic/Cretaceous and Cretaceous/Tertiary, given the area was re-submerged after this time, they are considered of little importance.

Subsequently, Socotra Island continued to grow due to uplift. Despite changing sea depths, there are indications that land species could migrate over from mainland African and Arabia via land bridges and stepping stones. With ‘cousin’ species present in Somalia and Arabia, it’s likely the Dragon Blood Trees originated there in the distant past.

From 16,000 years ago onwards, the isolation of the archipelago grew due to a combination of further flooding of low-lying areas, the formation of large basins (namely the Guardafui and Brothers basin) and increasing distance from the mainland. Since then, the species on Socotra and its neighbouring islands have had time to evolve and adapt to their surroundings, become different, albeit sometimes closely related, to their continental counterparts.

It was only around the third century BC that Socotra started to emerge from its isolation after attracting the attention of the young Alexander the Great during one of his war campaigns. The island then became known in the Hellenic World and all the Mediterranean for being one of the main sources of incense, myrrh and dragon’s blood powder resin.

As Socotra commercial importance gradually faded away in the centuries to follow, Dragon’s Blood resin remained one of the main exports of the island. The resin was considered a precious ingredient of dyes, lacquers and varnishes, and the legend has it that Antonio Stradivari – the famous seventeenth century luthier from Cremona – used Socotra’s red resin to varnish his violins.

yemen

The landscape of the Socotra archipelago. Credit: Annalisa Molini via Flickr.

One thing is for sure, as Annalisa Molini’s (Assistant Professor at the Institute Center for Water and Environment, in Abu Dhabi), photographs attest to: Socotra island and it’s Dragon Blood Trees are stunning.

However, the remoteness of the Socotra archipelago and the current armed conflict in Yemen threaten to put at risk the island’s important and unique natural heritage; one that no doubt, should be protected and preserved.

References

M. Culek: Geological and morphological evolution of the Socotra Archipelago (Yemen) from the biogeographical view, Journal of Landscape Ecology, 6, 3, 84–108, DOI: 10.2478/jlecol-2014-0005, 2014

Brown, B.A. Mies, Vegetation Ecology of Socotra, Springer Netherlands, Dordrecht, 2012. doi:10.1007/978-94-007-4141-6.

Imaggeo is the EGU’s online open access geosciences image repository. All geoscientists (and others) can submit their photographs and videos to this repository and, since it is open access, these images can be used for free by scientists for their presentations or publications, by educators and the general public, and some images can even be used freely for commercial purposes. Photographers also retain full rights of use, as Imaggeo images are licensed and distributed by the EGU under a Creative Commons licence. Submit your photos at http://imaggeo.egu.eu/upload/.

Imaggeo on Mondays: An explosive cloud

Imaggeo on Mondays: An explosive cloud

One of the world’s most volcanically active regions is the Kamchatka Peninsula in eastern Russia. It is the subduction of the Pacific Plate under the Okhotsk microplate (belonging to the large North America Plate) which drives the volcanic and seismic hazard in this remote area. The surface expression of the subduction zone is the 2100 km long Kuril-Kamchatka volcanic arc: a chain of volcanic islands and mountains which form as a result of the sinking of a tectonic plate beneath another.  The arc extends from Hokkaido in Japan, across the Kamchatka Peninsula, through to the Commander Islands (Russia) to the Northwest. It is estimated that the Pacific Plate is moving towards the Okhotsk microplate at a rate of approximately 79mm per year, with variations in speed along the arc.

There are over 100 active volcanoes along the arc. Eruptions began during the late Pleistocene, some 126,000 years ago at a time when mammoths still roamed the vast northern frozen landscapes and the first modern humans walked the Earth.

Many of the volcanoes in the region continue to be active today. Amongst them is Karymsky volcano, the focus of this week’s Imaggeo on Mondays image. Towering in excess of 1500 m above sea level (a.s.l), the volcano is composed of layers of hardened lava and the deposits of scorching and fast moving clouds of volcanic debris knows as pyroclastic flows. You can see some careering down the flanks of the volcano in this image of the July 2004 eruption. The eruptive column is the result of a

“strong Vulcanian-type explosion, with the cloud quickly rising more than 1 km above the vent. The final height of the eruption cloud was approximately 3 km and in the image you can clearly see massive ballistic fallout from multiple hot avalanches on the volcanoes slopes,”

explains Alexander Belousov, a Senior Researcher at the Institute of Volcanology and Seismology in Russia and author of this week’s photograph.

 

USGS map of the Kuril-Kamchatka trench, showing earthquake locations and depth contours on downgoing slab. Credit: USGS, USGS summary of the 2013 Sea of Okhotsk earthquake, via Wikimedia Commons.

USGS map of the Kuril-Kamchatka trench, showing earthquake locations and depth contours on downgoing slab. Credit: USGS, USGS summary of the 2013 Sea of Okhotsk earthquake, via Wikimedia Commons.

If you pre-register for the 2015 General Assembly (Vienna, 12 – 17 April), you can take part in our annual photo competition! From 1 February up until 1 March, every participant pre-registered for the General Assembly can submit up three original photos and one moving image related to the Earth, planetary, and space sciences in competition for free registration to next year’s General Assembly!  These can include fantastic field photos, a stunning shot of your favourite thin section, what you’ve captured out on holiday or under the electron microscope – if it’s geoscientific, it fits the bill. Find out more about how to take part at http://imaggeo.egu.eu/photo-contest/information/.

Follow

Get every new post on this blog delivered to your Inbox.

Join other followers: