GeoLog

early career researchers

What are science-policy placements and are they for you?

What are science-policy placements and are they for you?

This month’s GeoPolicy blog will examine science-policy internships, fellowships, secondments and pairing-schemes in closer detail – highlighting the reasons for undertaking a placement and interviewing Dr Michelle Cain, an EGU member who participated in NERC’Policy Placement Fellowship Scheme

Science-policy placements provide scientists with the opportunity to use their knowledge within a policy-orientated organisation. This could include working with a local government, supporting an NGO or undertaking a project within a larger political body such as the UN or the EU.

There are many reasons that you may decide to take a temporary sidestep from your current career path to a science-policy placement. Undertaking a placement gives you a chance to try something new. Even if you are completely satisfied with your current position, working in a different sector is likely to expand your skill set, illuminate research topics you may not have considered and open up new networks and opportunities to share your research. Taking a step away from your research for a limited period of time may also allow you to look at it with fresh eyes or from a different perspective. Furthermore, it can prepare you for contributing to the policymaking process directly through processes such as the Register of Commission Expert Groups.

On a metalevel, science-policy placements can help integrate science and policy by creating channels for communication and generating a shared understanding about how both academic and policy sectors function.Science-policy placements come in many different forms. They can be as short as one week or as long as four years with variants suitable for researchers at all career levels. The four, primary science-policy placement categories are outlined below:

  1. Internships are normally aimed at students or early career scientists and are typically for a period of between three and six months. Science-policy internships can be found in a plethora of organisations and sectors. Despite not always being paid, internships are a great way to gain an understanding of the science-policy interface and the different roles that exist.
  2. Fellowships are aimed at early to mid-level career professionals who are able to contribute their knowledge and skills to the organisation that they join while allowing them to simultaneously learn new skills to enhance their own expertise. It should be noted that the term ‘fellowship’ is used very broadly and as a result fellowships schemes can range from a paid internship to a secondment in both functionality and fellow responsibilities.
  3. Secondments allow employees to temporarily change roles within the same institute or with a partner organisation. Secondments are believed to expand both the skillsets and interests of the employee, thereby increasing their motivation and ability. Secondments can last from a couple of months to four years and can be on a full time or part-time basis. The employer generally continues to pay the researchers’ wages although the hosting organisation may also supplement their income. This is an excellent option for researchers who are happy with their current position but would like to try something new.
  4. Pairing Schemes involve researchers and policymakers sharing their experiences by spending one week to a few months at each other’s place of employment.

 

Traineeships at the Parliament © European Union 2016 – European Parliament

Despite working as the EGU Policy Officer and with policymakers for the last couple of years, I have never undertaken a science-policy placement. So, I decided to interview Dr Michelle Cain, an EGU member who participated in NERC’s Policy Placement Fellowship Scheme, to get a first-hand insight into the benefits and challenges of being involved with a science-policy placement.

During her 18 month NERC Policy Placement, Michelle worked two days per week advising the UK’s Department for Environment Food and Rural Affairs (Defra) on air quality modelling while continuing her own research. Although she was taken on as the expert within the Department, Michelle was “[…] surprised by how knowledgeable the policy staff were on specific air quality models and the science behind the policy”.

I was surprised by how knowledgeable the policy staff were on specific air quality models and the science behind the policy.

Michelle noted that working in the government department was a “very different world to that of a Post Doc” with “very quick deadlines” and with research topics “determined by the upcoming needs of policymakers” rather than her personal interest. Michelle believed that many scientists may also struggle with the concise nature of the policy briefs as, “most research needs to be summarised in 1-2 pages”.

Despite some of the challenges, Michelle believed her experience with Defra improved her “ability to communicate to a wider audience and pinpoint the most critical pieces of information”. She believes this not only helps her to “communicate research more thoroughly to policymakers but also to the general public as well as friends and family”. The experience also connected her with people working in policy who she would not have known otherwise and who she feels that she can still communicate her research with even though the placement has ended.

The [NERC Policy Placement] improved my ability to communicate to a wider audience and pinpoint the most critical pieces of information.

Michelle believes “the process behind getting science into decision-making is usually too opaque” but by undertaking the placement she was able to “gain an insight into the potential opportunities and avenues that do exist to share my research”. Although it might not be for everyone, Michelle said she would “recommend a similar placement to anyone who was interested in the policy realm or who was thinking about moving in that direction”.

What else should you consider before applying for a science-policy placement?

A few other things you may want to consider before applying for a science-policy placement include: the location (e.g. whether you would like to stay in your current city or perhaps go to an area geographically relevant to your research), the type of organisation (e.g. local government, a regional level institution or a private but politically-orientated organisation) and the skills or knowledge that you would like to gain (e.g. how to present your research to policymakers, how science is used in policymaking or event organisation).

See the EGU Geoscience Policy Internship, Fellowship and Secondment Opportunities to learn more about specific science-policy placements in Europe and around the world. You can also email policy@egu.eu for more information or sign up to the EGU Database of Expertise for regular science-policy updates.

GeoTalk: The life and death of an ocean – is the Atlantic Ocean on its way to closing?

GeoTalk: The life and death of an ocean – is the Atlantic Ocean on its way to closing?

Geotalk is a regular feature highlighting early career researchers and their work. Following the EGU General Assembly, we spoke to João Duarte, the winner of a 2017 Arne Richter Award for Outstanding Early Career Scientists.  João is a pioneer in his field. He has innovatively combined tectonic, marine geology and analogue modelling techniques to further our understanding of subduction initiation and wrench tectonics. Not only that, he is a keen science communicator who believes in fostering the next generation of Earth scientists.

Thank you for talking to us today! Could you introduce yourself and tell us a little more about your career path so far?

I am a geologist by training. I gained my undergraduate degree from the University of Lisbon and I stayed there to research geodynamics as part of my PhD which I finished in 2012. As I was coming to the end of writing up my thesis I moved to Monash University, in 2011, to start a postdoc.

Yes! I worked on my PhD and a postdoc at the same time, but I was only really finishing up. My thesis was almost ready. When I moved to Australia the defence was outstanding, but otherwise I was almost done.

My PhD thesis focused on the reactivation of the SW Iberian margin. It was the very first time I came across the problem of subduction initiation and that has become a big focus of my career to date.

My postdoc came to an end in 2015 and I moved back to Portugal and took up a position at the Faculty of Sciences of the University of Lisbon where I’ve started building my own research group [more on that later on in the interview].

I’ve always been passionate about science. It started when I was a kid, I’ve always been interested in popular science. My favourite writers are Isaac Asimov and Carl Sagan.

During EGU 2017, you received an Arne Richter Award for Outstanding Young Scientists for your work on subduction initiation and wrench tectonics. What brought you to study this particular field?

On the morning of the 1st of November 1755, All Saints Day, when many Portuguese citizens found themselves at church attending mass, one of the most powerful earthquakes ever document struck off the coast of Portugal, close to Lisbon.

It was gigantic, with an estimated magnitude (Mw) 8.5 or 9. It triggered three tsunami waves which travelled up the Tagus River, flooding Lisbon harbour and the downtown area. The waves reached the United Kingdom and spread across the Atlantic towards North America too.

The combined death toll as a result of the ground shaking, tsunamis and associated fires may have exceeded 100,000 people.

The event happened during the Enlightenment period, so many philosophers and visionaries rushed to try and understand the earthquake. Their information gathering efforts are really the beginning of modern seismology.

But the 1755 event wasn’t an isolated one. There was another powerful earthquake off the coast of Portugal 200 years later, in 1969. It registered a magnitude (Mw) of 7.8.

This earthquake coincided with the development of the theory of plate tectonics. While Wegener proposed the idea of continental drift in 1912, it wasn’t until the mid-1960s that the theory really took hold.

People knew by then that the margins of the plates along the Pacific were active – the area is famous for its powerful earthquakes, explosive volcanoes and high mountain ranges. Both the 2004 Indian Ocean and 2011 Thoku (Japan) earthquakes and tsunamis were triggered at active margins.

But the margins of the Atlantic are passive [where the plates are not actively colliding with or sinking below one another, so tectonic activity – such as earthquakes and volcanoes – is minimal]. So, it was really strange that we could have such high magnitude quakes around Portugal.

A large European project was put together to produce a map of the SW Iberian margin and the Holy Grail would be to locate the source of the 1755 quake. The core of my PhD was to compile all the ocean floor and sub-seafloor data and produce a new map of the main tectonic structures of the margin.

Tectonic map of the SW Iberia margin. In grey the deformation front of the GibraltarArc, in white the strike-slip fault associated with the Azores-Gibraltar fracture zone, and in yellow the new set of thrust faults that mark the reactivation of the margin (Duarte et al., 2013, Geology)

What did the new map reveal?

Already in the 70s and later in the late 90s, researchers started to wonder if this margin could be in a transition between passive to active: could an old passive margin be reactivated? If so, could this mean a new subduction zone is starting somewhere offshore Portugal?

The processes which lead a passive margin to become active were unclear and controversial. All the places where subduction is starting are linked to locations where plates are known to be converging already.

The occurrence of the high magnitude earthquakes, along with the fact that there is structural evidence (folding, faulting and independent tectonic blocks) of a subduction zone in the western Mediterranean (the Gibraltar Arc) suggested that it was possible that a new subduction system was forming in the SW Iberian margin.

The new ocean floor and seismic data revealed three active tectonic systems, which were included in the map. The map shows the margin is being reactivated and allowed identifying the mechanism by which it could happen: ‘Subduction invasion’ or ‘subduction infection’ (a term first introduced by Mueller and Phillips, 1991).

I’d like to stress though, that the map and its findings are the culmination of many years of work and ideas, by many people. My work simply connected all the dots to try to build a bigger picture.

So, what does ‘subduction infection and invasion’ involve?

Subduction zones, probably, don’t start spontaneously, but rather they are induced from locations where another subduction system (or an external force, such as  a collisional belt) already exists.

For example, if a narrow bridge of land connects an ocean (as is often the case) where subduction is active to one where the margins are passive. The active subduction zones from one can invade the passive margins and activate them. You see this in the other side of the Atlantic (where subduction zones have migrated from the Pacific), in the Scotia and the Lesser Antilles arcs.

We also know this has happened in past. But Iberia might be the only place where it is happening currently. And that is fascinating!

Earlier on you said that the ‘Holy Grail’ moment of the map would be if you could find the source of the 1755 earthquake. Did you?

No. Not entirely. The source of the earthquake is probably a complex fault, where multiple faults ruptured to generate the quake, not just one (as is commonly thought).

In your medal lecture at the General Assembly in 2017 (and in your papers) you allude to the fact that the reactivation of the SW Iberian margin has even bigger implications. You suggest that staring of subduction process in the arcs of the Atlantic could ultimately lead to the ocean closing altogether?

The Wilson cycle defines the lifecycle of an ocean: first it opens and spreads, then its passive margins founder and new subduction zones develop; finally, it consumes itself and closes.

So, the question is: if subduction zones are starting in the Atlantic will it eventually close?

There are a few things to consider:

The ocean floor age is limited. It seems that it has to start to disappear after about ~ 200 million years (the oldest oceanic lithosphere is ~ 270 million years old). Passive margins in the Earth history also had life spans of the order of ~ 200 Ma, suggesting that this may not be a coincidence. I suspect that there is a dynamic reason for this…

Most researchers agree that the next major oceanic basin which is set to close is the Pacific. The Americas (to the east) are moving towards East Asia and Australia at a rate of 3-4 cm yr-1, so it should close in roughly 300 million years.

We also know that the Atlantic has been opening for 200 million years already. If you believe that the closing of the Pacific indicates that continental masses have been slowly gliding towards each other to form the next supercontinent (a theory know as extroversion); then the Atlantic has to continue to open until the Pacific closes. This would mean that ocean floor rocks in the Atlantic would be very old (up to 500 million years old!) – highly unlikely given the oldest existing oceanic rocks are 270 million years old.

The map I made during my PhD showed that the Atlantic oceanic lithosphere is already starting to break-up and is weakened.

All the pieces combined, I think the most likely outcome is that the Pacific and the Atlantic will close at the same time. This scenario would require other oceanic basins to form, and that’s possible in the existing Indian Ocean and/or the Southern Ocean. Present-day continents would be brought together to form a new supercontinent, which we called Aurica.

Aurica – the hypothetical future supercontinent formed as the result of the simultaneous closure of the Atlantic and the Pacific oceans (Duarte et al., 2016, Geological Magazine).

If you take into consideration present-day plate velocities the supercontinent could be fully formed in approximately 300 million years’ time. We expect Aurica to be centred slightly north of the equator, with Australia and the Americas forming the core of the landmass.

With those findings, it is obvious why subduction has been a recurring theme in your career as a researcher. But what sparked your initial interest in geology and then tectonics in general?

I spent a lot of time outdoors as a kid. I was always curious and fascinated by the outdoor world. I joined the scouts when I was eight. We used to camp and explore caves by candle-light!

When I was 14 I took up speleology; there are lots of caves in the region I grew up in, in Portugal. As amateurs, my speleology group participated in archaeological and palaeontological work. The rocks in the region are mainly of Jurassic age and contain lots of fossils (including some really nice dinosaurs).

The outdoors became part of me.

I knew early on that I didn’t want a boaring job with lots of routine. I wanted a career that would allow me to discover new things.

Geology was the most obvious choice when picking a degree. I felt it offered me a great way to stay in touch with the other sciences too – physics via geophysics and biology through palaeontology.

In my 2nd year at university, I was invited to help in an analogue lab looking at problems in structural geology and geodynamics.

I was always attracted to the bigger picture. Plate tectonics unifies everything. I like how by studying tectonics you can link a lot of little things and then bring them together to look at the bigger picture.

What advice do you have for early career scientists?

When I found out about the award I was shocked because I wasn’t expecting it at all.

I always felt I wasn’t doing enough [in terms of research output]. I think that early career scientists are being pushed to limits that are unreasonable; the competition is intense. It’s not always obvious, but there is a lot of pressure to publish. But there are also a lot of very good people whose publication record doesn’t necessarily reflect their skill as a scientist.

The award made me realise I was probably doing enough!

Moving to Australia was KEY. Moving and creating collaborations with different people will make you unique. You don’t want to stay in the same institution. [By doing so] you become very linear. There are a number of schemes available (like Marie Curie and Erasmus) which allow you to move. Use these to the fullest. Moving allows you to see problems from different perspectives. And you will become more unique as a scientist.

There a lot of bright young scientist – never have we had so many – we are all unique, but you have to find the uniqueness in yourself. Most of all have fun. Do science for the right reasons and remember that people still recognise honest hard work (the award showed me that).

Interview by Laura Roberts, EGU Communications Officer.

References

Duarte, J. C., Rosas, F, M., Terrinha, P., Schellart W, P., Boutelier, D., Gutscher, M-A., and Ribeiro, A.,: Are subduction zones invading the Atlantic? Evidence from the southwest Iberia margin, GEOLOGY, 41, 8, 839–842, https://

Duarte, J. C., and Schellart W, P.,: Plate Boundaries and Natural Hazards, Geophysical Monograph, 219 (First Edition), ISBN: 978-1-119-05397–2, 2016

Duarte, J., Schellart, W., & Rosas, F.,: The future of Earth’s oceans: Consequences of subduction initiation in the Atlantic and implications for supercontinent formation, Geological Magazine, 1–14,  https://doi.org/10.1017/S0016756816000716, 2016.

Purdy, G.M.,: The Eastern End of the Azores-Gibraltar Plate Boundary, GJI, 43, 3, 973–1000, https://doi.org/10.1111/j.1365-246X.1975.tb06206.x, 1975

Mueller, S., Phillips, R, J.,: On The initiation of subduction, JGR, 96, B1, 651-665, https://doi.org/10.1029/90JB02237, 1991

Ribeiro, A., Cabral, J., Baptista, R., and Matias, L.,: Stress pattern in Portugal mainland and the adjacent Atlantic region, West Iberia, Tectonics, 15, 3, 641–659, https://doi.org/10.1029/95TC03683, 1996

 

 

 

 

 

Cartooning science at EGU 2017 with Matthew Partridge (a.k.a Errant Science)

Cartooning science at EGU 2017 with Matthew Partridge (a.k.a Errant Science)

Most researchers are regular conference-goers. Tell a geoscientist you are attending the EGU General Assembly and they will most likely picture rooms full of people listening to a miriad of talks, many an hour chatting to colleagues old and new and you desperately trying to find your way around the maze that is the Austria Centre Vienna (where the conference is held). Describing your experiences to others (not so familiar with the conference set-up) can be a lot more tricky.

Cue Matthew Partridge, author of Errant Science, a blog which features (~) weekly cartoons and posts about the world of research.

With the aim to demystify what happens during a week-long conference, Matthew set himself the challenge of keeping a daily diary of his time at the 2017 General Assembly. As if that weren’t a tall enough order, the posts feature not only a witty take on his time in Vienna, but also cartoons! Whilst battling a huge sense of ‘impostor syndrome‘ (Matthew’s words, not ours), Matthew’s daily posts bring the conference to life.

With Errant Science (Matthew’s twitter alter ego is possibly better know) at the conference, we couldn’t pass up the opportunity of speaking to him. Video camera in hand, our press assistant, Kai Boggild, talked with Matthew about his motivations for blogging about the conference and that badger cartoon.

If you didn’t read Matthew’s posts while the conference was taking place in April, grab a coffee and get comfortable, they should be enjoyed repeatedly!

Enmeshed in the gears of publishing – lessons from working as a young editor

Enmeshed in the gears of publishing – lessons from working as a young editor

Editors of scientific journals play an important role in the process research publication. They act as the midpoint between authors and reviewers, and set the direction of a given journal. However, for an early career scientist like me (I only defended my PhD in early December 2016) the intricacies of editorial work remained somewhat mysterious. Many academic journals tend to appoint established, more senior scientists to these roles, and while most scientists interact with editors regularly their role is not commonly taught to more junior researchers. I was fortunate to get the chance to work, short term, as an associate editor at Nature Geoscience in the first 4 months of this year (2017). During that time, I learned a number of lessons about scientific publishing that I felt could be valuable to the community at large.

What does an editor actually do?

The role of the editor is often hidden to readers; in both paywalled and open-access journals the notes and thoughts editors make on submitted manuscripts are generally kept private. One of the first things to appreciate is that editors judge whether a manuscript meets a set of editorial thresholds that would make it appropriate for the journal in question, rather than whether the study is correctly designed or the results are robust. I’d argue most editors are looking for a balance of an advance beyond existing literature and the level of interest a manuscript offers for their audience.

At each step of the publication process, from initial submission, through judging referee comments, to making a final decision, the editor is making a judgement whether the manuscript still meets those editorial thresholds.

The vast majority of the papers I got the chance to read were pretty fascinating, but since the journal I was working for is targeted at the whole Earth science community some of these were a bit too esoteric, and as such didn’t fit the thresholds we set to appeal to the journal audience.

I actually found judging papers on the basis of editorial thresholds refreshing – in our capacity as peer reviewers, most scientists are naturally sceptical of methodology and conclusions in other studies, but as an editor in most cases I was able to take the authors conclusions at face-value, and leave the critical assessment to referees.

That’s where the important difference lies; even though editors are generally scientists by training, since they are naturally not experts in every field that they receive papers from, it’s paramount to find reviewers who have the appropriate expertise and to ask them the right set of questions. In journals with academic editors, the editors may have more leeway to make critical comments, but impartiality is key.

Much of this may be already clear to many readers, but perhaps less so to more junior scientists. Many of the editorial decisions are somewhat subjective, like gauging the level of interest to a journal audience.

In the context of open access research journals, I think it’s worth asking whether the editorial decisions should also be made openly readable by authors and referees – this might aid potential authors in deciding how to pitch their articles to a given journal. This feeds into my next point – what are journals looking for?

By which metrics do journals judge studies?
The second big thing I picked up is that the amount of work does not always equate to a paper being appropriate for a given journal. Invariably, authors have clearly worked hard, and it’s often really tricky to explain to authors that their study is not a good fit for the journal you’re working for.

Speaking somewhat cynically, journals run for profit are interested in articles that can sell more copies or subscriptions. Since the audiences are primarily scientists, “scientific significance” will be a dominant consideration, but Nature and subsidiary journals also directly compare the mainstream media coverage of some of their articles with that of Science – that competition is important to their business.

Many other authors have discussed the relative merits of “prestige” journals (including Nobel prize winners – https://www.theguardian.com/science/2013/dec/09/nobel-winner-boycott-science-journals), and all I’ll add here is what strikes me most is that ‘number of grad student hours worked’ is often not related to those articles that would be of a broader interest to the more mainstream media. The majority of articles don’t attract media attention of course, but I’d also argue that “scientific significance” is not strongly linked to the amount of time that goes into each study.

In the long run, high quality science tends to ensure a strong readership of any journal, but in my experience as an editor the quality of science in submitted manuscripts tends to be universally strong – the scientific method is followed, conclusions are robust, but in some cases they’re just pitched at the wrong audience. I’d argue this is why some studies have found in meta-analysis that in the majority of cases, articles that are initially rejected are later accepted in journals of similar ‘prestige’ (Weller et al. 2001, Moore et al. 2017).

As such, it’s imperative that authors tailor their manuscripts to the appropriate audience. Editors from every journal are picking from the same pool of peer reviewers, and so the quality of reviews should also be consistent, which ultimately determines the robustness of a study; so to meet editorial thresholds, prospective authors should think about who is reading the journal.
It’s certainly a fine line to walk – studies that are confirmatory of prior work tend to attract fewer readers, and as such editors may be less inclined to take an interest, but these are nonetheless important for the scientific canon.

In my short time as an editor I certainly didn’t see a way around these problems, but it was eye-opening to see the gears of the publication system – the machine from within, as it were.

Who gets to review?
One of the most time-consuming jobs of an editor is finding referees for manuscripts. It generally takes as long, if not far longer, than reading the manuscript in detail!

The ideal set of referees should first have the required set of expertise to properly assess the paper in question, and then beyond that be representative of the field at large. Moreover, they need to have no conflict of interest with the authors of the paper. There are an awful lot of scientists working in the world at the moment, but in some sub-fields it can be pretty hard to find individuals who fit all these categories.

For example, some studies in smaller research fields with a large number of senior co-authors often unintentionally rule out vast swathes of their colleagues as referees, simply because they have collaborated extensively.

Ironically, working with everyone in your field leaves no-one left to review your work! I have no doubt that the vast majority of scientists would be able to referee a colleagues work impartially, but striving for truly impartial review should be an aim of an editor.

As mentioned above, finding referees who represent the field is also important. More senior scientists have a greater range of experience, but tend to have less time available to review, while junior researchers can often provide more in-depth reviews of specific aspects. Referees from a range of geographic locations help provide diversity of opinion, as well as a fair balance in terms of gender.

It was certainly informative to compare the diversity of authors with the diversity of the referees they recommended, who in general tend to be more male dominated and more US-centric than the authors themselves.

A positive way of looking at this might be that this represents a diversifying Earth science community; recommended referees tend to be more established scientists, so greater author diversity might represent a changing demographic. On the other hand, it’s certainly worth bearing in mind that since reviewing is increasingly becoming a metric by which scientists themselves are judged, recommending referees who are more diverse is a way of encouraging a more varied and open community.

What’s the job like?
Editorial work is definitely rewarding – I certainly felt part of the scientific process, and providing a service to authors and the readership community is the main remit of the job.

I got to read a lot of interesting science from a range of different places, and worked with some highly motivated people. It’s a steep learning curve, and tends to be consistently busy; papers are always coming in, so there’s always a need to keep working.

Perhaps I’m biased, but I’d also suggest that scientists could work as editors at almost any stage in their careers, and it offers a neat place between the world of academia and science communication, which I found fascinating.

By Robert Emberson, freelance science writer

References

Moore, S., Neylon, C., Eve, M. P., O’Donnell, D. P., and Pattinson, D. 2017. “Excellence R Us”: university research and the fetishisation of excellence. Palgrave Communications, 3, 16105

Weller A.C. 2001 Editorial Peer Review: Its Strengths and Weaknesses. Information Today: Medford NJ

Follow

Get every new post on this blog delivered to your Inbox.

Join other followers: