Showcase your film at Geocinema at the 2016 General Assembly!

Showcase your film at Geocinema at the 2016 General Assembly!

Every year, we showcase a great selection of geoscience films at the EGU General Assembly and after six successful years we will again be running Geocinema in 2016. If you’ve shadowed a scientist in the lab, filmed fantastic spectacles in the field, or have produced an educational feature on the Earth, planetary or space sciences, we want to hear from you.

Geocinema features short clips and longer films related to the geosciences, and from animations to interviews, all films are welcome. If you would like to contribute to this popular event, please fill out the submission form by 4 January 2016.

This year, in line with the theme of the EGU 2016 General Assembly, we particularly encourage submissions representing the conference theme: Active Planet. If your film highlights the conference theme, please indicate this in the submission form.

To get a feel for what we have screened in previous years, take a look at the online archive, with films that explore all facets of geoscience – from ocean depths to outer space.

Suitable films will be screened at the Geocinema room during the EGU 2016 General Assembly in Vienna (17–22 April 2016). Note that you must be able to provide us with an electronic or DVD version of your film and you must have appropriate permission to show the feature in a public venue. Multiple submissions from the same person are welcome. Films must be in English or have subtitles in English, since it is the language of the conference. Multiple submissions from the same person are welcome.

For more information, please send us an email or get in touch with our Communications Officer Laura Roberts.

Imaggeo on Mondays: Drilling a landslide

Imaggeo on Mondays: Drilling a landslide

That landslides are hazardous goes without saying; the risk posed by them will largely depend on where they occur and their exact characteristics, which makes understanding the mechanisms which trigger them, as well as predicting when they might happen, extremely difficult. Today’s Imaggeo on Mondays image, brought to you by Ekrem Canli, a PhD student at the University of Vienna, is an example of how scientists are trying to get a better handle on landslide mechanics.

The Salcher landslide is situated in the transition zone between the Flyschzone and the Klippen Zone; both belonging to the most landslide prone areas in Austria exhibiting almost 5 landslides per km². Flysch materials in that area consist of alternations of fine grained layers (clayey shales, silty shales, marls) and sandstones, whereas the Klippen Zone is covered by a sequence of marly beds with intercalated sandy limestones.

Our featured Imaggeo picture shows students during field work at the Salcher landslide observatory in Gresten (Austria) extracting sediment cores from percussion drilling – a technique in which core samplers are driven into the soil by repeated hammer blows using a percussive drilling rig.

The Salcher landslide observatory was initiated in 2014 as a long term monitoring project (10+ years). On the one hand, an increased frequency of landslide occurrences in many parts of the world is commonly listed as an expected impact of human-induced climate change. On the other hand, the lack of historic or long term monitoring information on landsliding makes is difficult to correlate landslide occurrence and its triggering event (e.g. intense rainfall, ground vibrations) with past and potentially future conditions. Additionally, most landslides are not in a constantly active state – meaning they are at rest and not moving downslope – but are only reactivated after certain triggering events before they eventually come to a halt again. This dormant state may cover several years or even longer, which most landslide monitoring efforts do not cover so far. Consequently, monitoring systems with automated instrumentation, which allows for regular, remote observations to be gathered, have been of great value in the past in terms of understanding forthcoming landslide dynamics.

The monitoring setup at the Salcher landslide observatory covers current state-of-the-art methods in landslide investigation (such as inclinometers, piezometers, TDR probes, etc., see this paper for more information on monitoring landslides) combined with rather new and innovative techniques, such as permanent terrestrial laser scanning (pTLS – for an automated high resolution surface change detection on a daily basis) or permanent ERT (Electrical resistivity tomography) for spatially monitoring the propagation of rainwater in the subsurface every three hours. Additionally, percussion drillings and dynamic probing was performed on a longitudinal section of the landslide for a better structural interpretation of the landslide subsurface.

And on a more personal side note: everything looks so shiny and bright while presenting results on conferences…most of the time, however, you spend time on fixing (and cursing) things in the field that seem not to work for any particular reason. You are not alone out there!

By Ekrem Canli, PhD student, University of Vienna (ENGAGE working group on Geomorphological Systems and Risk Research).



Canli, E., Thiebes, B., Engels, A., Glade, T., Schweigl, J., and Bertagnoli, M.: Multi-parameter monitoring of a slow moving landslide in Gresten (Austria), Geophysical Research Abstracts, Vol. 17, EGU2015-223-3, EGU General Assembly 2015

Canli, E., Höfle, B., Hämmerle, M., Thiebes, B., and Glade, T.: Permanent 3D laser scanning system for an active landslide in Gresten (Austria), Geophysical Research Abstracts, Vol. 17, EGU2015-2885-2, EGU General Assembly 2015

Crozier,M.J.: Deciphering the effect of climate change on landslide activity: A review, Geomorphology, Volume 124, Issues 3–4, doi:10.1016/j.geomorph.2010.04.009, 2010

Petschko, H., Brenning, A., Bell, R., Goetz, J., and Glade, T.: Assessing the quality of landslide susceptibility maps – case study Lower Austria, Nat. Hazards Earth Syst. Sci., 14, 95-118, doi:10.5194/nhess-14-95-2014, 2014.

Supper, R., Ottowitz, D., Jochum, B., Kim, J.-H., Römer, I., Pfeiler, S., Lovisolo, M., Gruber, S., and Vecchiotti, F.: Geoelectrical monitoring: an innovative method to supplement landslide surveillance and early warning, Near Surface Geophysics, Volume 12, Issue 1, doi:10.3997/1873-0604.2013060, 2014

Wieczorek, G.F., and Snyder, J.B.: Monitoring slope movements, in Young, R., and Norby, L., Geological Monitoring: Boulder, Colorado, Geological Society of America, p. 245–271, doi: 10.1130/2009.monitoring, 2009,

Imaggeo is the EGU’s online open access geosciences image repository. All geoscientists (and others) can submit their photographs and videos to this repository and, since it is open access, these images can be used for free by scientists for their presentations or publications, by educators and the general public, and some images can even be used freely for commercial purposes. Photographers also retain full rights of use, as Imaggeo images are licensed and distributed by the EGU under a Creative Commons licence. Submit your photos at


GeoPolicy: EGU sciences on debate at the European Parliament

GeoPolicy: EGU sciences on debate at the European Parliament

The adoption of legislation within the European Union (EU) is a complex process involving many steps. In my first blog post in this GeoPolicy series I highlighted an example of this process.

Several draft legislation pieces are currently being assessed within the European Parliament (EP) and Council of Ministers (Council) that have been influenced by EGU-related science. This blog post summarises this draft legislation and to where in the process each piece has progressed.

Much of the information for this blog post has been taken from the European Parliament Research Service (EPRS) website, which produces support documents for the EP. It is here that you can find out more information about all EU legislation currently in progress.


Organic Farming Legislation

Organic farming is a political object of the EU, described as an “overall system of farm management and food production that respects natural life cycles”. Since the initial adoption in 2009,

 European Union Organic Produce Logo . Credit: (distributed via Wikimedia Commons )

European Union Organic Produce Logo . Credit: (distributed via Wikimedia Commons )

legislation has been continuously edited and expanded. The percentage area of agricultural land in the EU used for organic farming has remained at 6 % despite a steady expansion of the organic market. Currently, the EU imports organic produce to cover this gap in supply and demand.

The new legislation proposed by the European Commission (EC) has streamlined current legislation and removed historical ‘exception rules’ in order to define organic farming more rigorously. These changes include:

  • Organic farmers would no longer be able to use non-organic seed or introduce non-organic young poultry;
  • Organic farmers would be compensated if unintentional non-authorised products are found within their farms;
  • Mixed farming techniques (organic and conventional farming) would be allowed only during the conversion period from traditional to organic practices.

Market for organic foodstuffs: the top 10 countries. Sourced from the FiBL and IFOAM report ‘ORGANIC IN EUROPE: Prospects and Developments’


The figure below shows the progress of this drafted legislation: currently at the ‘trilogue’ step. This means the drafted legislation has been proposed by the EC and submitted to the Council, the EP and relevant stakeholders who have been able to give their feedback (a staggering 950 amendments were received!). Both the EP and the Council have produced their amended legislation drafts, which have been approved by their respective allocated subcommittees. Now, selected members from the EP and Council are to produce the final drafted legislation in the trilogue, which then will be voted to be adopted by the EP.

Progress stage of the drafted legislation. Sourced from Organic farming legislation EP progress briefing.

Progress stage of the drafted legislation. Sourced from the ‘organic farming legislation EP progress briefing’.



Post-2020 reform of the EU Emissions Trading System

The EU Emission Trading Scheme (ETS) attempts to reduce greenhouse gas emissions by buying and selling emission ‘allowances’. One allowance is equal to one tonne of carbon dioxide or gas equivalent . The video below gives a good overview of the ETS.

The total amount of allowances is capped relative to 1990 emission totals, but this cap is reduced every year by 1.74 % to incentivise industries to reduce their emissions. If companies have reduced their emissions to below this cap they can sell surplus allowances, or keep them for the next year. The price of the allowance depends on supply and demand. Industries are incentivised to invest in carbon-reducing technology if this is a cheaper alternative than buying allowances. If carbon prices are lower than alternative technologies, extra allowances can be purchased from companies who have already reduced their emissions.

This EU legislation concentrates on the 4th phase of the ETS which spans the years 2020-2028 (we are currently in the 3rd phase, 2013-2020). The major policy points are:

  • The introduction of a market stabilisation reserve where 12 % of surplus annual allowances are stored for future use;
  • The annual cap decrease will change from 1.74 % to 2.2 % to reduce emissions faster;
  • Industries will now have to account for indirect carbon leakages in their emission inventories;
  • New funds will be available to aid start-up renewable projects.

This legislation is in the early stages of the process: the EC proposal document is currently receiving feedback and suggested amendments.  National parliaments, the European Economic & Social Committee and/or the Committee of Regions must still give feedback before an edited draft can be formed.

ETS Progress Bar

Progress stage of the drafted legislation. Sourced from the ‘Emissions Trading Scheme legislation EP progress briefing’.



National emission ceilings for air pollutants

Qir Quality Exposures

Percentage of the urban population in the EU28 exposed to air pollutant concentrations above EU and WHO reference levels (2010-12). Sourced from the ‘European Environment Agency: Air quality in Europe’. 

In December 2015 the EC produced an impact assessment focusing on five different policy options to achieve the EU’s health and environment objective goals. Despite considerable improvements, the European Environment Agency (EEA) has indicated that the EU still breaks pollutant levels that are considered to result in unnacceptable risks to humands and the environment. These levels are defined by the World Health Organisation (WHO) and are based exclusively on scientific findings. EU targets are much less restrictive than those of the WHO, but these levels are still being broken, as the figure on the right shows. Health-related costs of air pollution in the EU range between €330–940 billion per year.

The Gothenburg Protocol (1999) aimed to reduce acidification, eutrophication, and ground-level ozone by setting emissions caps for sulphur dioxide, nitrogen oxides, volatile organic compounds and ammonia by 2010. This new EU legislation aims to further reduce emissions by setting new caps and larger fines for non-compliance. The European Commission estimates that implementation costs would range from €2.2 to 3.3 billion per year.

The legislation has been reviewed by impacted stakeholders and the EP advisory committee. The next stage is to discuss and amend the proposal in the EP plenary session. Once accepted, it will become the official stance of the EP. Negotiations are then continued with the Council in the trilogue before a final decision is made and the legislation is adopted.


More information about the current draft legislation being considered in the European parliament can be found here.


EGU2016: Applying for financial support to attend the General Assembly

EGU2016: Applying for financial support to attend the General Assembly

The EGU is committed to promoting the participation of both early career scientists and established researchers from low and middle income countries who wish to present their work at the EGU General Assembly. In order to encourage participation of scientists from both these groups, a limited amount of the overall budget of the EGU General Assembly is reserved to provide financial support to those who wish to attend the meeting.

From 2005 to 2015, the total amount awarded grew from about €50k to €110k, with 270 awards being allocated to support attendance to the 2015 General Assembly, representing a 34% application success rate. For the 2016 General Assembly, the EGU has allocated €110k to financially support scientists who wish to attend the meeting. About 80-90% of the funds are reserved to assist early career scientists in attending the conference, whilst the remaining funds will be allocated to established scientists.

Financial support includes a waiver of the registration fee and a refund of the Abstract Processing Charge (relating to the abstract for which support was requested). Additionally, the grant may include support for travel expenditures, at the discretion of the Support Selection Committee, to a maximum of €300. The EGU currently runs two different financial support schemes; you will be able to find more details about each of these awards on the Support & Distinction section on the EGU 2016 website. You will also find details on who is eligible for the awards on the website.

Scientists who wish to apply for financial support should submit an abstract, on which they are first authors, by 1 December 2015. Late applications, or applications where the scientist is not the main author, will not be considered. The EGU Support Selection Committee will make its decision to support individual contributions by 23 December 2015. All applicants will be informed after the decision via email in late December or January. Only the granted amount mentioned in the financial support email will be paid out to the supported contact author.

To submit the abstract of your oral or poster presentation, please enter the Call-For-Papers page on the EGU2016 website, select the part of the programme you would like to submit an abstract to, and study the respective session list. Each session shows the link to Abstract Submission that you should use. More information on how to submit an abstract is available from the EGU 2016 website.

Applying for financial support is easier than ever! As soon as you make your choice of session you will be prompted to select whether you wish to apply for financial support. If you do, be sure you tick the appropriate box when submitting your abstract. Bear in mind that, even if you are applying for support, you will still need to pay the Abstract Processing Charge. A screenshot of the first screen of the abstract submission process is shown below.

The abstract submission page (click for larger). If you wish to apply for financial support, please select the relevant support box.

The abstract submission page (click for larger). If you wish to apply for financial support, please select the relevant support box.


As of 2015 there is an improved selection process for the allocation of the awards. Abstracts are evaluated on the basis of the criteria outlined below:

Evaluation Criteria Weight
How well does this contribution fit into the session it is submitted to? 10%
Is this contribution essential for the session being successful? 30%
Is the abstract clearly structured and scientifically sound? 25%
Are there conclusions and are they supported by data or analysis? 25%
How well is the abstract written (grammar, orthography)? 10%


Schematic summary of the evaluation criteria.

Schematic summary of the evaluation criteria.

Next year’s financial-support awardees will be notified in late December or early January. If you have any questions about applying for financial support, please contact EGU communications Officer, Laura Roberts.



Get every new post on this blog delivered to your Inbox.

Join other followers: