GeoLog

GeoLog

GeoTalk: Beatriz Gaite on why videos are a great tool for communicating your research to a broad audience

GeoTalk: Beatriz Gaite on why videos are a great tool for communicating your research to a broad audience

If you’ve not heard about our Communicate Your Science Video Competition before it gives early career scientists the chance to produce a video up-to-three-minutes long to share their research with the general public. The winning entry receives a free registration to the General Assembly the following year.

In this GeoTalk interview, Laura Roberts talks to Beatriz Gaite an early career scientist whose video on how recycling the noisy part of recordings made by seismometers can tells us important information about the Earth’s interior structure was voted as the winning entry of the 2016 Communicate Your Science Video Competition. Read on to hear about their top tips for filming a science video and what inspired them to use video to communicate their science in the first place.

Before we get started, could you introduce yourself and tell our readers a little more about your research?

I am a seismologist mainly studying the Earth structure. I did my PhD on Mexico and its vicinity using a novel approach developed in the last decade. Before, seismologists used to study earthquake signals to infer the inner structure, but now we can also study seismic ambient noise, which is everything on a seismic record… except the earthquake signals! This means we now analyse what  used to be thrown away, once considered useless. In this sense, it is like recycling. This has revolutionised the field and opened multiple applications, not only for imaging the Earth interior, but also for monitoring landslides, volcanoes or climate change effects.

Some of our readers may yet not be familiar with the competition, can you tell us a little more about it and what made you decide to take part in the competition?

Yes, the EGU video competition consists on explaining your research to a general audience through a three minute video. Once ready, you submit your video to EGU and disseminate it as much as possible to get people to vote for it . I decided to take part  because I was fascinated with the bunch of applications developed from seismic ambient noise and aware of the importance of communicating science to society. This cocktail of thoughts inspired me to create the video.

Watch Beatriz’s winning film, Subtle Whisper of the Earth

Had you filmed any science videos prior to producing ‘Subtle Whisper of the Earth’?

No, never. Only as a teenager I recorded some short, home-made videos for outdoor activities, but nothing related with science. However, in the production of Shubtle Whisper of the Earth I was helped by two professionals: Jordi Cortés, the journalist in charge of the communication at the Institute of Earth Sciences Jaume Almera, ICTJA-CSIC, who filmed and edited the video, and Daniel García (@rocambloguesco), an Earth Sciences communicator who helped me with the script.

What inspired you to make a film about your research and submit the entry to the competition?

Since I finished my PhD I was thinking about making a documentary to show how seismic ambient noise was such a big evolution for seismology. Indeed, I already had some script ideas bubbling in my mind. Then, I found out  about the competition through the recently created communication department of my center and, after thinking about it I went for it. I thought it [the video competition} was a great opportunity to make my ideas real.

We can’t go into too much detail here, but how did you go about collecting the footage and turning it into a film?

First, I adapted my original ideas to the length of the video competition specifications. After several iterations, I got the main idea. In parallel, I thought on the story: I needed something common to people, like recycling. I made a script, then Daniel helped me to simplify it from the research realm to society, and I organised it in sequences, duration and film resources. All these steps were the most time-consuming part. Jordi and I organized the “field work” dividing the filming on indoor and outdoor. Since we organized the sequence planning in advance, it took us only one morning shooting indoors and one afternoon outdoors. Jordi’s experience behind the camera and in  production helped a lot to get the final video, but we only used user-level material and software for producing and editing.

What’s your top tip for aspiring science filmmakers?

Have a clear idea of the message you want to communicate. Also, you need a story to catch the attention of the audience. Once you have the idea and the story, the next step, how to visually express them, comes easily.

Beatriz preparing materials to be used in the making of her film. Credit: Jordi Cortés

Which part of the filming process did you enjoy the most?

I enjoyed the whole process, but especially two parts: first, the beginning of the creative process, thinking what, why, and how I wanted to communicate the story, imagining the screenshots in my mind. And second, shooting with Jordi was really fun, I enjoyed it a lot, it was like a game.

Would you recommend filmmaking as a way for scientist to reach out to a broad audience?

Sure! When I started I did not think that the video would reach as many people as it did. I was really happy when some friends told me ‘now we know what you do’. Even some colleagues told me that now they understood pretty well what we get from the seismic ambient noise. It is worth it. A short video is a good way to reach a broad audience globally. Being short, specific and visual are good ingredients to grab attention.

Would you recommend others taking part in the Communicate your Science Video Competition?

Yes, of course. It is an enjoyable exercise to communicate your research. The hardest part of the competition is the self-promotion to get votes, but that’s a different story 😉

Has this interview inspired you to go forth and produce a science video? The Communicate Your Science Video Competition is currently open for submissions.

If you are pre-registered to attend the General Assembly in April, go ahead and produce a video with scenes of you out in the field, or at the lab bench showing how to work out water chemistry; entries can also include cartoons, animations (including stop motion), or music videos, – you name it! To submit your video simply email it to Laura Roberts (networking@egu.eu) by 26 February 2017.

For more information about the competition take a look at this blog post. For inspiration, why not take a look at the finalist videos from the 2015 and 2016 editions? For more tips and tricks on how to make a video to communicate your research read an interview with vlogger extraordinaire Simon Clark. We also spoke to Zakaria Ghazoui, winner of the 2015 video competition to as his thoughts on how to make a great video.

GeoPolicy: Have your say on Horizon 2020

GeoPolicy: Have your say on Horizon 2020

The European Union provides almost 75 billion euros of funding through the Horizon 2020 scheme. This money can fund research projects, studentships, post-doctorates and scientific outreach (to name but a few!). The EU is now calling for feedback and comments about the scheme. This month’s GeoPolicy explains how you can have your say.

 

Are you a PhD student funded by European Research Council (ERC) or have you received grants from the ERC? If so, this money will have come from the Horizon 2020 (H2020) scheme, funded by the European Union (EU).

Essentially, H2020 provides financial support to scientists and businesses wishing to establish projects that overlap with the EU’s policy objectives (promoting excellent science that benefits society). H2020 was introduced in more detail in a previous GeoPolicy post entitled ‘An overview of EU funding for the Earth, atmosphere, and space sciences’. The scheme runs from 2014 to 2020. Now, at this halfway stage, the EU requesting feedback through an online survey.

The objective of the consultation is to collect information from a wide audience on different aspects of the implementation of the Joint Undertakings operating under Horizon 2020.

The survey is open to all and feedback will be used to improve the second half of H2020 and to support discussions currently being conducted on the next EU funding project: FP9 (Framing Programme 9, 2021-2030).

Contributions are particularly sought from researchers, industry, entrepreneurs, innovators and all types of organisations that have participated in Horizon 2020 and in calls for proposals published by the Joint Undertakings in particular.

So, if you have been part of the H2020 process then consider completing the survey. Deadline for complete is the 10th March 2017.

LINK TO SURVEY

 

NB: Applying for ERC research grants is done through the EU Participant Portal. More details about the process can be found here.

Imaggeo on Mondays: Don’t miss the abstract deadline

Imaggeo on Mondays: Don’t miss the abstract deadline

The EGU General Assembly brings together geoscientists from all over the world to one meeting that covers all disciplines of the Earth, planetary and space sciences. The conference is taking place in Vienna on 23–28 April 2017, providing an opportunity for both established scientists and early career researchers to present their work and discuss their ideas with experts in all fields of the geosciences.

You can get a feel for the great geoscience that will be discussed at the meeting by browsing through the EGU 2017 sessions. Clicking on ‘please select’ allows you to search for sessions by Programme Group. You’ll then be able to view the sessions in more detail and submit an abstract to its relevant session. The deadline for abstract submission is 11 January 2017, 13:00 CET. That’s only two days away!

Also, remember that you can benefit from early registration for the conference until 31 March 2017. Register online on the Registration section of the General Assembly website. Note that EGU members benefit from reduced member rates; to become a member, or renew your EGU membership, go to www.egu.eu/membership/.

The full meeting programme will be made available on 2 March 2017.

For more information about the General Assembly, please see the EGU 2017 website.

Note on hotel reservations
Please note that the congress ECCIMD2017 (10,000 participants) will take place in Vienna at the same time as the EGU2017. In addition, the Vienna City Marathon (40,000 participants) will take place on Sunday, resulting in many hotels being fully booked the night before. Therefore, we strongly recommend booking accommodation as soon as possible.

Geosciences Column: Do coastlines have memories?

do coastlines have memories

Did you know that the shape of coastlines is determined by the angle at which waves crash against the shoreline. It has long been thought that fluctuations in the wave incidence angle are rapidly felt by coastlines, which change the shapes of their shores quickly in response to shifting wave patterns.

Or do they?

Researchers at the British Geological Survey, Duke University (USA) and Woods Hole Oceanographic Institution in Massachusetts, have performed experiments which show that spits and capes hold ‘a memory’ of their former shapes and past wave climates, influencing their present geomorphology. The findings have recently been published in the EGU’s open access journal Earth Surface Dynamics.

Gradients in sediment distribution within wave-driven currents and shoreface depth play an important role in shaping coastlines. But the angle between an offshore wave crest and the shoreline is chief among the parameters which shape coasts worldwide.

Low-angle waves – those with approach the coast at an angle of 45° or less – have a smoothing effect on the coastline and keep its shape relatively steady. On the other hand, high-angle waves – those with slam against the shore at an angle of 45° or more – introduce instability and perturbations which shape the coast.

The figure shows the experimental set-up used in the study. It also nicely illustrates how coastlines are shaped by the angle of the incoming wave. The arrows indicatenet flux direction under waves incoming from the left; arrow lengths qualitatively indicate the flux. Sand is not transported through cells which are in shadow for a particular wave. From C. W. Thomas et al., 2016.

Alterations to the patterns of shorelines are caused by enhanced erosion and/or deposition, driven by changes in wave climate. Ultimately, coastline geomorphology evolves depending on the relative degree of high and low-angle waves in the wave climate, as well as the degree of irregularity in the wave angle distribution.

Climate change will alter the wave climate, particularly during storm events, so we can expect shorelines to shift globally. Predicting how coastlines will adapt to changing climatic conditions is hard, but more so if coastlines retain a memory of their past shapes when responding to changing wave regimes.

Flying spits (finger-like landforms which project out towards sea from relatively straight shoreline) and cuspate capes (a triangular shaped accumulation of sand and shingle which grows out towards sea) are particularly susceptible to climate change. They form when high angle waves approach the shore at a slant. Animal communities living within fragile marine and estuarine ecosystems largely depend on the protection they offer. They are also of socio-economic importance as many shelter coastal infrastructures. Understanding how they will be affected by a changing climate is vital to develop well-informed coastal management policies.

To understand how changing wave climates affect the evolution of flying spits and cuspate capes (from now on referred to as spits and capes), the team of researchers devised experiments which ran on a computer simulation.

They generated an initially straight shoreline and set the wave conditions for the next 250 years (which is the length of time it takes in nature) to allow the formation of spits and capes.

To test whether pre-existing coastal morphologies played a role in shaping coastlines under changing wave climates, over a period of 100 years (which is loosely the rate at which climate change is thought to be occurring under anthropogenic influences), the scientists gradually changed the angle at which waves approached the coast.  After the 100 year period the simulation was left to run a further 650 years under the new wave conditions.

The investigation revealed that when subjected to gradual changes in the angle at which waves approach the shoreline, capes take about 100 years to start displaying a new morphology. The tips of the capes are eroded away and so they slowly start to shrink.

Spits adjust to change much more slowly. Even after 750 years the experimental coastlines retain significant undulations, suggesting that sandy spits retain a long-term memory of their former shape.

Snapshots of simulated coastline morphologies evolved under changing wave climate. U is the fraction of waves which are approaching the shoreline at 45 degress or higher. Coastlines evolved for 250 years under initial conditions. (aii, bii)> The U values of the changed wave climate show the coastline morphologies evolved 200 and 500 years after the wave climate is changed at 250 years, and the morphologies evolved over 1000 years under static wave climates with the same U. From C. W. Thomas et al., 2016. See paper for full image caption. Click to enlarge.

The implications of the results are far reaching.

Be it implicitly or explicitly, many studies of coastal geomorphology assume that present coastal shape is exclusively a result of present wave climate. The new study shows that even with steady wave climate conditions at present, coastline shapes could still be responding to a past change in wave climate.

Reconstructions of ancient coastal geographies and paleo-wave climates might also be approached differently from now on. The researchers found that as spits adjust to changing wave climates they can leave behind a complex array of lagoons linked by beach bridges. Though there are a number of process which can lead to the formation of these coastal features, researchers must also consider alterations of coastlines as a response to changing wave climate from now on.

The findings of the study can also be applied to the management of sandy coastlines.

Currently, forecasts of future shoreline erosion and sediment deposition are made based on observations of how coasts have changed in recent decades. The new study highlights these short observation timescales may not be enough to fully appreciate how our beaches and coasts might be reshaped in the future.

This is especially true when it comes to climate change mitigation. Decisions on how to best protect the world’s shores based on their environmental and socio-economic importance will greatly benefit from long-term monitoring of coastal geomorphology.

But more work is needed too. The experiments performed by the team only consider two types of coastline morphology  (spits and capes) and only two types of wave climate. While the experiments provide a time-scale over which spits and capes might be expected to change, other factors not considered in the study (wave height, shoreface depth, etc…) will alter the predicted timescales. The time-scales given by the study should be used only as a guideline and highlight the need for more research in this area.

 

By Laura Roberts Artal, EGU Communications Officer

 

References

Thomas, C. W., Murray, A. B., Ashton, A. D., Hurst, M. D., Barkwith, A. K. A. P., and Ellis, M. A.: Complex coastlines responding to climate change: do shoreline shapes reflect present forcing or “remember” the distant past?, Earth Surf. Dynam., 4, 871-884, doi:10.5194/esurf-4-871-2016, 2016.

Follow

Get every new post on this blog delivered to your Inbox.

Join other followers: