GeoLog

GeoLog

Imaggeo on Mondays: Tongue of a small giant

Imaggeo on Mondays: Tongue of a small giant

In a world where climate change causes many mountain glaciers to shrink away, bucking the ‘melting’ trend is not easy. In today’s post, Antonello Provenzale, a researcher in Italy, tells us of one glacier in the Alps which is doing just that.

Mountain glaciers are retreating worldwide, with the possible exception of the Karakoram area. For most glaciers, ablation (ice melt) during the warm season is stronger than the accumulation of new ice by snowfall. As a result, while glacier ice flows downhill, the accelerated melting at lower elevation forces the terminus of the glacier to retreat uphill, with a net loss of ice volume.

Such behavior is especially evident on the southern flank of the Alps, where many mountain glaciers have dramatically reduced their dimensions, often fragmenting into smaller, detached pieces.

An important exception is represented by the Miage glacier in Val Veny, Val d’Aosta, northwestern Italy, at the base of the Mount Blanc massif. This glacier is covered with a thick layer of debris, which protects the underlying ice from the direct heating by sunlight. The rocks which make up the debris are poor heat conductors and thus preserve the ice beneath them, making this glacier particularly stable.

This glacier is so stationary that vegetation and trees have grown on its margins and on the debris. Several ponds punctuate the surface of the glacier, as well as some areas on its sides. The Miage lake, for example, is directly in contact with the slowly flowing ice and it is sometimes run by large outburst waves generated by huge blocks of ice and rock falling into the lake water.

This picture was taken in September 2014, during a field excursion of the Italian Glaciological Committee. The image is a composition (stitch) of several images taken with a moderate wide angle lens on a rangefinder digital camera.

By Antonello Provenzale studies Geophysical Fluid Dynamics, Earth System processes and Geosphere-Biosphere interactions at the Institute of Geosciences and Earth Resources of the National Research Council of Italy.

Imaggeo is the EGU’s online open access geosciences image repository. All geoscientists (and others) can submit their photographs and videos to this repository and, since it is open access, these images can be used for free by scientists for their presentations or publications, by educators and the general public, and some images can even be used freely for commercial purposes. Photographers also retain full rights of use, as Imaggeo images are licensed and distributed by the EGU under a Creative Commons licence. Submit your photos at http://imaggeo.egu.eu/upload/.

What are science-policy placements and are they for you?

What are science-policy placements and are they for you?

This month’s GeoPolicy blog will examine science-policy internships, fellowships, secondments and pairing-schemes in closer detail – highlighting the reasons for undertaking a placement and interviewing Dr Michelle Cain, an EGU member who participated in NERC’Policy Placement Fellowship Scheme

Science-policy placements provide scientists with the opportunity to use their knowledge within a policy-orientated organisation. This could include working with a local government, supporting an NGO or undertaking a project within a larger political body such as the UN or the EU.

There are many reasons that you may decide to take a temporary sidestep from your current career path to a science-policy placement. Undertaking a placement gives you a chance to try something new. Even if you are completely satisfied with your current position, working in a different sector is likely to expand your skill set, illuminate research topics you may not have considered and open up new networks and opportunities to share your research. Taking a step away from your research for a limited period of time may also allow you to look at it with fresh eyes or from a different perspective. Furthermore, it can prepare you for contributing to the policymaking process directly through processes such as the Register of Commission Expert Groups.

On a metalevel, science-policy placements can help integrate science and policy by creating channels for communication and generating a shared understanding about how both academic and policy sectors function.Science-policy placements come in many different forms. They can be as short as one week or as long as four years with variants suitable for researchers at all career levels. The four, primary science-policy placement categories are outlined below:

  1. Internships are normally aimed at students or early career scientists and are typically for a period of between three and six months. Science-policy internships can be found in a plethora of organisations and sectors. Despite not always being paid, internships are a great way to gain an understanding of the science-policy interface and the different roles that exist.
  2. Fellowships are aimed at early to mid-level career professionals who are able to contribute their knowledge and skills to the organisation that they join while allowing them to simultaneously learn new skills to enhance their own expertise. It should be noted that the term ‘fellowship’ is used very broadly and as a result fellowships schemes can range from a paid internship to a secondment in both functionality and fellow responsibilities.
  3. Secondments allow employees to temporarily change roles within the same institute or with a partner organisation. Secondments are believed to expand both the skillsets and interests of the employee, thereby increasing their motivation and ability. Secondments can last from a couple of months to four years and can be on a full time or part-time basis. The employer generally continues to pay the researchers’ wages although the hosting organisation may also supplement their income. This is an excellent option for researchers who are happy with their current position but would like to try something new.
  4. Pairing Schemes involve researchers and policymakers sharing their experiences by spending one week to a few months at each other’s place of employment.

 

Traineeships at the Parliament © European Union 2016 – European Parliament

Despite working as the EGU Policy Officer and with policymakers for the last couple of years, I have never undertaken a science-policy placement. So, I decided to interview Dr Michelle Cain, an EGU member who participated in NERC’s Policy Placement Fellowship Scheme, to get a first-hand insight into the benefits and challenges of being involved with a science-policy placement.

During her 18 month NERC Policy Placement, Michelle worked two days per week advising the UK’s Department for Environment Food and Rural Affairs (Defra) on air quality modelling while continuing her own research. Although she was taken on as the expert within the Department, Michelle was “[…] surprised by how knowledgeable the policy staff were on specific air quality models and the science behind the policy”.

I was surprised by how knowledgeable the policy staff were on specific air quality models and the science behind the policy.

Michelle noted that working in the government department was a “very different world to that of a Post Doc” with “very quick deadlines” and with research topics “determined by the upcoming needs of policymakers” rather than her personal interest. Michelle believed that many scientists may also struggle with the concise nature of the policy briefs as, “most research needs to be summarised in 1-2 pages”.

Despite some of the challenges, Michelle believed her experience with Defra improved her “ability to communicate to a wider audience and pinpoint the most critical pieces of information”. She believes this not only helps her to “communicate research more thoroughly to policymakers but also to the general public as well as friends and family”. The experience also connected her with people working in policy who she would not have known otherwise and who she feels that she can still communicate her research with even though the placement has ended.

The [NERC Policy Placement] improved my ability to communicate to a wider audience and pinpoint the most critical pieces of information.

Michelle believes “the process behind getting science into decision-making is usually too opaque” but by undertaking the placement she was able to “gain an insight into the potential opportunities and avenues that do exist to share my research”. Although it might not be for everyone, Michelle said she would “recommend a similar placement to anyone who was interested in the policy realm or who was thinking about moving in that direction”.

What else should you consider before applying for a science-policy placement?

A few other things you may want to consider before applying for a science-policy placement include: the location (e.g. whether you would like to stay in your current city or perhaps go to an area geographically relevant to your research), the type of organisation (e.g. local government, a regional level institution or a private but politically-orientated organisation) and the skills or knowledge that you would like to gain (e.g. how to present your research to policymakers, how science is used in policymaking or event organisation).

See the EGU Geoscience Policy Internship, Fellowship and Secondment Opportunities to learn more about specific science-policy placements in Europe and around the world. You can also email policy@egu.eu for more information or sign up to the EGU Database of Expertise for regular science-policy updates.

Imaggeo on Mondays: Salt shoreline of the Dead Sea

Imaggeo on Mondays: Salt shoreline of the Dead Sea

This beautiful aerial image (you’d be forgiven for thinking that it was a watercolour) of the Dead Sea was captured by a drone flying in 100m altitude over its eastern coastline.

Climate change is seeing temperatures rise in the Middle East, and the increased demand for water in the region (for irrigation) mean the areas on the banks of the lake are suffering a major water shortage. As a result, the lake is shrinking at an alarming rate. Currently, it is shrinking by over 1m/year. The image was captured as part of a survey in the wider project DESERVE (Kottmeier et al. 2016) addressing the environmental changes accompanying the lake level drop.

In this case, the special focus is to look for e.g. submarine springs or other geomorphological evidence in the shallow lake water that can later turn into hazardous sinkholes (cf. recent publication on that topic Al-Halbouni et. al. 2017). Learn more about the environmental challenges and geohazard risks the region faces in this December 2016 Imaggeo on Mondays post.

The round features see in this image, nevertheless have been identified as salt accumulations following basically the sinusoidal shoreline.

The different colours of the lake indicate water of varying densities, e.g. fresh water floating on top of saltier water and possible sediments inside.

The shoreline appears with different colours each year depending on the sediment mud & evaporite material. Each line represents the retreat of a given year!

[Editor’s note: this image was a finalsit in the 2017 Imaggeo Photo Contest]

By Laura Robert and Djamil Al-Halbouni of the German Research Center for Geosciences, Physics of the Earth, Potsdam, German

Imaggeo is the EGU’s online open access geosciences image repository. All geoscientists (and others) can submit their photographs and videos to this repository and, since it is open access, these images can be used for free by scientists for their presentations or publications, by educators and the general public, and some images can even be used freely for commercial purposes. Photographers also retain full rights of use, as Imaggeo images are licensed and distributed by the EGU under a Creative Commons licence. Submit your photos at http://imaggeo.egu.eu/upload/.

 

June GeoRoundUp: the best of the Earth sciences from around the web

June GeoRoundUp: the best of the Earth sciences from around the web

Drawing inspiration from popular stories on our social media channels, as well as unique and quirky research news, this monthly column aims to bring you the best of the Earth and planetary sciences from around the web.

Major Story

With June being the month when the world’s oceans are celebrated with World Ocean Day (8th June) and the month when the UN’s Ocean Conference took place, it seemed apt to dedicate our major story to this precious, diverse and remote landscape.

In fact, so remote and inaccessible are vast swathes of our oceans, that 95% of them are unseen (or unvisited) by human eyes. Despite their inaccessibility, humans are hugely reliant on the oceans.  According to The World Bank, the livelihoods of approximately 10 to 12% of the global population depends on healthy oceans and more than 90%of those employed by capture fisheries are working in small-scale operations in developing countries. Not only that, but the oceans trap vast amounts of heat from the atmosphere, limiting global temperature rise.

Yet we take this valuable and beautiful resource for granted.

As greenhouse gas emissions rise, the oceans must absorb more and more heat. The ocean is warmer today than it has been since recordkeeping began in 1880. Over the past two decades this has resulted in a significant change in the composition of the upper layer of water in our oceans. Research published this month confirms that ocean temperatures are rising at an alarming rate, with dire consequences.

Corals are highly sensitive to changes in ocean temperatures. The 2015 to 2016 El Niño was particularly powerful. As its effects faded, ocean temperatures in the Pacific, Atlantic and Indian oceans remained high, meaning 70 percent of corals were exposed to conditions that can cause bleaching. Almost all of the 29 coral reefs on the U.N. World Heritage list have now been damaged by bleaching.

This month, the National Oceanic and Atmospheric Administration (NOAA) declared that bleaching was subsiding for the first time in three years. Some of the affected corals are expected to take 10 to 15 years to recover, in stress-free conditions. But as global and ocean temperatures continue to rise, corals are being pushed closer to their limits.

Warmer ocean temperatures are also causing fish to travel to cooler waters, affecting the livelihoods of fishermen who depend on their daily catch to keep families afloat and changing marine ecosystems forever. And early this month, millions of sea-pickles – a mysterious warm water loving sea creature- washed up along the western coast of the U.S, from Oregon to Alaska. Though scientists aren’t quite sure what caused the bloom, speculation is focused on warming water temperatures.

It is not only warming waters which are threatening the world’s oceans. Our thirst for convenience means a million plastic bottles are bought around the world every minute. Campaigners believe that the environmental crisis brought about by the demand for disposable plastic products will soon rival climate change.

In 2015 researchers estimated that 5-13 million tonnes of plastics flow into the world’s oceans annually, much coming from developing Asian nations where waste management practices are poor and the culture for recycling is limited. To tackle the problem, China, Thailand, Indonesia and the Philippines vouched to try and keep more plastics out of ocean waters. And, with a plastic bottle taking up to 450 years to break down completely, what happens to it if you drop it in the ocean? Some of it, will likely find it’s way to the Arctic. Indeed, recent research suggests that there are roughly 300 billion pieces of floating plastic in the polar ocean alone.

A bottle dropped in the water off the coast of China is likely be carried eastward by the north Pacific gyre and end up a few hundred miles off the coast of the US. Photograph: Graphic. Credit: If you drop plastic in the ocean, where does it end up? The Guardian. Original Source: Plastic Adrift by oceanographer Erik van Sebille. Click to run.

And it’s not only the ocean waters that are feeling the heat. As the demand for resources increases, the need to find them does too. The sea floor is a treasure trove of mineral and geological resources, but deep-sea mining is not without environmental concerns. Despite the ethical unease, nations are rushing to buy up swathes of the ocean floor to ensure their right to mine them in the future. But to realise these deep-water mining dreams, advanced technological solutions are needed, such as the remote-controlled robots Nautilus Minerals will use to exploit the Bismarck Sea, off the coast of Papua New Guinea.

What you might have missed

Lightning reportedly ignited a deadly wildfire in Portugal, seen here by ESA’s Proba-V satellite on 18 June.

“On June 17, 2017, lightning reportedly ignited a deadly wildfire that spread across the mountainous areas of Pedrógão Grande—a municipality in central Portugal located about 160 kilometers (100 miles) northeast of Lisbon”, reported NASA – National Aeronautics and Space Administration. The death toll stands at 62 people (as reported by BBC News). The fires were seen from space by satellites of both NASA and ESA – European Space Agency satellites.

Large wildfires are also becoming increasing common and severe in boreal forests around the world. Natural-color images captured by NASA satellites on June 23rd, shows wildfires raging near Lake Baikal and the Angara River in Siberia. At the same time, a new study has found a link between lightning storms and boreal wildfires, with lightning strikes thought to be behind massive fire years in Alaska and northern Canada. This infographic further explores the link between wildfires triggered both by lightning and human activities.

Meanwhile, in the world’s southernmost continent the crack on the Larsen C ice-shelf continues its inexorable journey across the ice. The rift is set to create on of the largest iceberg ever recorded. Now plunged in the darkness of the Antarctic winter, obtaining images of the crack’s progress is becoming a little tricker. NASA used the Thermal Infrared Sensor (TIRS) on Landsat 8 to capture a false-color image of the crack. The new data, which shows an acceleration of the speed at which the crack is advancing, has lead scientists to believe that calving of the iceberg to the Weddell Sea is imminent.

Links we liked

The EGU story

This month saw the launch of two new division blogs over on the EGU Blogs: The Solar-Terrestrial Sciences and the Geodynamics Division Blogs. The EGU scientific divisions blogs share division-specific news, events, and activities, as well as updates on the latest research in their field.

And don’t forget! To stay abreast of all the EGU’s events and activities, from highlighting papers published in our open access journals to providing news relating to EGU’s scientific divisions and meetings, including the General Assembly, subscribe to receive our monthly newsletter.

Follow

Get every new post on this blog delivered to your Inbox.

Join other followers: