GeoLog

News

GeoTalk: The life and death of an ocean – is the Atlantic Ocean on its way to closing?

GeoTalk: The life and death of an ocean – is the Atlantic Ocean on its way to closing?

Geotalk is a regular feature highlighting early career researchers and their work. Following the EGU General Assembly, we spoke to João Duarte, the winner of a 2017 Arne Richter Award for Outstanding Early Career Scientists.  João is a pioneer in his field. He has innovatively combined tectonic, marine geology and analogue modelling techniques to further our understanding of subduction initiation and wrench tectonics. Not only that, he is a keen science communicator who believes in fostering the next generation of Earth scientists.

Thank you for talking to us today! Could you introduce yourself and tell us a little more about your career path so far?

I am a geologist by training. I gained my undergraduate degree from the University of Lisbon and I stayed there to research geodynamics as part of my PhD which I finished in 2012. As I was coming to the end of writing up my thesis I moved to Monash University, in 2011, to start a postdoc.

Yes! I worked on my PhD and a postdoc at the same time, but I was only really finishing up. My thesis was almost ready. When I moved to Australia the defence was outstanding, but otherwise I was almost done.

My PhD thesis focused on the reactivation of the SW Iberian margin. It was the very first time I came across the problem of subduction initiation and that has become a big focus of my career to date.

My postdoc came to an end in 2015 and I moved back to Portugal and took up a position at the Faculty of Sciences of the University of Lisbon where I’ve started building my own research group [more on that later on in the interview].

I’ve always been passionate about science. It started when I was a kid, I’ve always been interested in popular science. My favourite writers are Isaac Asimov and Carl Sagan.

During EGU 2017, you received an Arne Richter Award for Outstanding Young Scientists for your work on subduction initiation and wrench tectonics. What brought you to study this particular field?

On the morning of the 1st of November 1755, All Saints Day, when many Portuguese citizens found themselves at church attending mass, one of the most powerful earthquakes ever document struck off the coast of Portugal, close to Lisbon.

It was gigantic, with an estimated magnitude (Mw) 8.5 or 9. It triggered three tsunami waves which travelled up the Tagus River, flooding Lisbon harbour and the downtown area. The waves reached the United Kingdom and spread across the Atlantic towards North America too.

The combined death toll as a result of the ground shaking, tsunamis and associated fires may have exceeded 100,000 people.

The event happened during the Enlightenment period, so many philosophers and visionaries rushed to try and understand the earthquake. Their information gathering efforts are really the beginning of modern seismology.

But the 1755 event wasn’t an isolated one. There was another powerful earthquake off the coast of Portugal 200 years later, in 1969. It registered a magnitude (Mw) of 7.8.

This earthquake coincided with the development of the theory of plate tectonics. While Wegener proposed the idea of continental drift in 1912, it wasn’t until the mid-1960s that the theory really took hold.

People knew by then that the margins of the plates along the Pacific were active – the area is famous for its powerful earthquakes, explosive volcanoes and high mountain ranges. Both the 2004 Indian Ocean and 2011 Thoku (Japan) earthquakes and tsunamis were triggered at active margins.

But the margins of the Atlantic are passive [where the plates are not actively colliding with or sinking below one another, so tectonic activity – such as earthquakes and volcanoes – is minimal]. So, it was really strange that we could have such high magnitude quakes around Portugal.

A large European project was put together to produce a map of the SW Iberian margin and the Holy Grail would be to locate the source of the 1755 quake. The core of my PhD was to compile all the ocean floor and sub-seafloor data and produce a new map of the main tectonic structures of the margin.

Tectonic map of the SW Iberia margin. In grey the deformation front of the GibraltarArc, in white the strike-slip fault associated with the Azores-Gibraltar fracture zone, and in yellow the new set of thrust faults that mark the reactivation of the margin (Duarte et al., 2013, Geology)

What did the new map reveal?

Already in the 70s and later in the late 90s, researchers started to wonder if this margin could be in a transition between passive to active: could an old passive margin be reactivated? If so, could this mean a new subduction zone is starting somewhere offshore Portugal?

The processes which lead a passive margin to become active were unclear and controversial. All the places where subduction is starting are linked to locations where plates are known to be converging already.

The occurrence of the high magnitude earthquakes, along with the fact that there is structural evidence (folding, faulting and independent tectonic blocks) of a subduction zone in the western Mediterranean (the Gibraltar Arc) suggested that it was possible that a new subduction system was forming in the SW Iberian margin.

The new ocean floor and seismic data revealed three active tectonic systems, which were included in the map. The map shows the margin is being reactivated and allowed identifying the mechanism by which it could happen: ‘Subduction invasion’ or ‘subduction infection’ (a term first introduced by Mueller and Phillips, 1991).

I’d like to stress though, that the map and its findings are the culmination of many years of work and ideas, by many people. My work simply connected all the dots to try to build a bigger picture.

So, what does ‘subduction infection and invasion’ involve?

Subduction zones, probably, don’t start spontaneously, but rather they are induced from locations where another subduction system (or an external force, such as  a collisional belt) already exists.

For example, if a narrow bridge of land connects an ocean (as is often the case) where subduction is active to one where the margins are passive. The active subduction zones from one can invade the passive margins and activate them. You see this in the other side of the Atlantic (where subduction zones have migrated from the Pacific), in the Scotia and the Lesser Antilles arcs.

We also know this has happened in past. But Iberia might be the only place where it is happening currently. And that is fascinating!

Earlier on you said that the ‘Holy Grail’ moment of the map would be if you could find the source of the 1755 earthquake. Did you?

No. Not entirely. The source of the earthquake is probably a complex fault, where multiple faults ruptured to generate the quake, not just one (as is commonly thought).

In your medal lecture at the General Assembly in 2017 (and in your papers) you allude to the fact that the reactivation of the SW Iberian margin has even bigger implications. You suggest that staring of subduction process in the arcs of the Atlantic could ultimately lead to the ocean closing altogether?

The Wilson cycle defines the lifecycle of an ocean: first it opens and spreads, then its passive margins founder and new subduction zones develop; finally, it consumes itself and closes.

So, the question is: if subduction zones are starting in the Atlantic will it eventually close?

There are a few things to consider:

The ocean floor age is limited. It seems that it has to start to disappear after about ~ 200 million years (the oldest oceanic lithosphere is ~ 270 million years old). Passive margins in the Earth history also had life spans of the order of ~ 200 Ma, suggesting that this may not be a coincidence. I suspect that there is a dynamic reason for this…

Most researchers agree that the next major oceanic basin which is set to close is the Pacific. The Americas (to the east) are moving towards East Asia and Australia at a rate of 3-4 cm yr-1, so it should close in roughly 300 million years.

We also know that the Atlantic has been opening for 200 million years already. If you believe that the closing of the Pacific indicates that continental masses have been slowly gliding towards each other to form the next supercontinent (a theory know as extroversion); then the Atlantic has to continue to open until the Pacific closes. This would mean that ocean floor rocks in the Atlantic would be very old (up to 500 million years old!) – highly unlikely given the oldest existing oceanic rocks are 270 million years old.

The map I made during my PhD showed that the Atlantic oceanic lithosphere is already starting to break-up and is weakened.

All the pieces combined, I think the most likely outcome is that the Pacific and the Atlantic will close at the same time. This scenario would require other oceanic basins to form, and that’s possible in the existing Indian Ocean and/or the Southern Ocean. Present-day continents would be brought together to form a new supercontinent, which we called Aurica.

Aurica – the hypothetical future supercontinent formed as the result of the simultaneous closure of the Atlantic and the Pacific oceans (Duarte et al., 2016, Geological Magazine).

If you take into consideration present-day plate velocities the supercontinent could be fully formed in approximately 300 million years’ time. We expect Aurica to be centred slightly north of the equator, with Australia and the Americas forming the core of the landmass.

With those findings, it is obvious why subduction has been a recurring theme in your career as a researcher. But what sparked your initial interest in geology and then tectonics in general?

I spent a lot of time outdoors as a kid. I was always curious and fascinated by the outdoor world. I joined the scouts when I was eight. We used to camp and explore caves by candle-light!

When I was 14 I took up speleology; there are lots of caves in the region I grew up in, in Portugal. As amateurs, my speleology group participated in archaeological and palaeontological work. The rocks in the region are mainly of Jurassic age and contain lots of fossils (including some really nice dinosaurs).

The outdoors became part of me.

I knew early on that I didn’t want a boaring job with lots of routine. I wanted a career that would allow me to discover new things.

Geology was the most obvious choice when picking a degree. I felt it offered me a great way to stay in touch with the other sciences too – physics via geophysics and biology through palaeontology.

In my 2nd year at university, I was invited to help in an analogue lab looking at problems in structural geology and geodynamics.

I was always attracted to the bigger picture. Plate tectonics unifies everything. I like how by studying tectonics you can link a lot of little things and then bring them together to look at the bigger picture.

What advice do you have for early career scientists?

When I found out about the award I was shocked because I wasn’t expecting it at all.

I always felt I wasn’t doing enough [in terms of research output]. I think that early career scientists are being pushed to limits that are unreasonable; the competition is intense. It’s not always obvious, but there is a lot of pressure to publish. But there are also a lot of very good people whose publication record doesn’t necessarily reflect their skill as a scientist.

The award made me realise I was probably doing enough!

Moving to Australia was KEY. Moving and creating collaborations with different people will make you unique. You don’t want to stay in the same institution. [By doing so] you become very linear. There are a number of schemes available (like Marie Curie and Erasmus) which allow you to move. Use these to the fullest. Moving allows you to see problems from different perspectives. And you will become more unique as a scientist.

There a lot of bright young scientist – never have we had so many – we are all unique, but you have to find the uniqueness in yourself. Most of all have fun. Do science for the right reasons and remember that people still recognise honest hard work (the award showed me that).

Interview by Laura Roberts, EGU Communications Officer.

References

Duarte, J. C., Rosas, F, M., Terrinha, P., Schellart W, P., Boutelier, D., Gutscher, M-A., and Ribeiro, A.,: Are subduction zones invading the Atlantic? Evidence from the southwest Iberia margin, GEOLOGY, 41, 8, 839–842, https://

Duarte, J. C., and Schellart W, P.,: Plate Boundaries and Natural Hazards, Geophysical Monograph, 219 (First Edition), ISBN: 978-1-119-05397–2, 2016

Duarte, J., Schellart, W., & Rosas, F.,: The future of Earth’s oceans: Consequences of subduction initiation in the Atlantic and implications for supercontinent formation, Geological Magazine, 1–14,  https://doi.org/10.1017/S0016756816000716, 2016.

Purdy, G.M.,: The Eastern End of the Azores-Gibraltar Plate Boundary, GJI, 43, 3, 973–1000, https://doi.org/10.1111/j.1365-246X.1975.tb06206.x, 1975

Mueller, S., Phillips, R, J.,: On The initiation of subduction, JGR, 96, B1, 651-665, https://doi.org/10.1029/90JB02237, 1991

Ribeiro, A., Cabral, J., Baptista, R., and Matias, L.,: Stress pattern in Portugal mainland and the adjacent Atlantic region, West Iberia, Tectonics, 15, 3, 641–659, https://doi.org/10.1029/95TC03683, 1996

 

 

 

 

 

May GeoRoundUp: the best of the Earth sciences from around the web

May GeoRoundUp: the best of the Earth sciences from around the web

Drawing inspiration from popular stories on our social media channels, as well as  unique and quirky research news, this monthly column aims to bring you the best of the Earth and planetary sciences from around the web.

Major Story

In the last couple of weeks of May, the news world was abuzz with the possibility of Donald Trump withdrawing from the Paris Agreement. Though the announcement actually came on June 1st, we’ve chosen to feature it in this round-up as it’s so timely and has dominated headlines throughout May and June.

In withdrawing from the agreement, the United States becomes only one of three countries in rejecting the accord, as this map shows. The implications of the U.S joining Syria and Nicaragua (though, to be clear, their reasons for not signing are hugely different to those which have motivated the U.S withdrawal) in dismissing the landmark agreement have been widely covered in the media.

President Trump’s announcement has drawn widespread condemnation across the financial, political and environmental sectors. Elon Musk, Tesla and SpaceX CEO, was one of many in the business sector to express their criticism of the President’s decision. In response to the announcement, Musk tweeted he was standing down from his duties as adviser to a number of White House councils. While in early May, thirty business CEOs  wrote an open letter published in the Wall Street Journal to express their “strong support for the U.S. remaining in the Paris Climate Agreement.”

In a defiant move, U.S. States (including California, New York and Vermont), cities and business plan to come together to continue to work towards meeting the targets and plans set out by the Paris Agreement. The group, coordinated by former New York City mayor Mark Bloomberg, aims to negotiate with the United Nations to have its contributions accepted to the Agreement alongside those of signatory nations.

“We’re going to do everything America would have done if it had stayed committed,” Bloomberg, said in an interview.

Scientist and learned societies have also been vocal in expressing their criticism of the White House decision. Both Nature and Science collected reactions from researchers around the globe. The EGU, as well as the American Geophysical Union, and many in the broader research community oppose the U.S. President’s decision.

“The EGU is committed to supporting the integrity of its scientific community and the science that it undertakes,” said the EGU’s President, Jonathan Bamber.

For an in-depth round-up of the global reaction take a look at this resource.

What you might have missed

This month’s links you might have missed take us on a journey through the Earth. Let’s start deep in the planet’s interior.

The core generates the Earth’s magnetic field. Periodically, the magnetic field reverses, but what caused it to do so? Well, there are several, competing, ideas which might explain why. Recently, one of them gained a bit more traction. By studying the seismic signals from powerful earthquakes, researchers at the University of Oxford found that regions on top of the Earth’s core sometimes behave like a giant lava lamp. It turns out that blobs of rock periodically rise and fall deep inside our planet. This could affect the magnetic field and cause it to flip.

Meanwhile, at the planet’s surface, the Earth’s outer solid layer (the crust) and upper layer of the molten mantle,  are broken up into a jigsaw of moving plates which pull apart and collide, generating earthquakes, driving volcanic eruptions and raising mountains. But the jury is still out as to when and how plate tectonics started. The Earth is so efficient at recycling and generating new crustal material, through plate tectonics, that only a limited record of very old rocks remains making it very hard to decipher the mystery. A recently published article explores what we know and what yet remains to be discovered when it comes to plate tectonics.

Tectonic plate boundaries. By Jose F. Vigil. USGS [Public domain], distributed by Wikimedia Commons.

Oil, gas, water, metal ores: these are the resources that spring to mind when thinking of commodities which fuel our daily lives. However, there are many others we use regularly, far more often than we realise or care to admit, but which we take for granted. Sand is one of them. In the industrial world it is know as ‘aggregate’ and it is the second most exploited natural resource after water. It is running out. A 2014 United Nations Environment Programme report highlighted that the “mining of sand and gravel greatly exceeds natural renewal rates”.

Links we liked

  • Earth Art takes a whole new meaning when viewed from space. This collection of photographs of natural parks as seen from above is pretty special.
  • This round-up is usually reserved for non-EGU related news stories, but given these interviews with female geoscientists featured in our second most popular tweet of the month, it is definitely worth a share: Conversations on being a women in geoscience – perspectives on what being a female in the Earth sciences.
  • We’ve shared these previously, but they are so great, we thought we’d highlight them again! Jill Pelto, a scientist studying the Antarctic Ice Sheet and an artist, uses data in her watercolous to communicate information about extreme environmental issues to a broad audience.

The EGU story

Temperatures in the Arctic are increasing twice as fast as in the rest of the globe, while the Antarctic is warming at a much slower rate. A new study published in Earth System Dynamics, an EGU open access journal, shows that land height could be a “game changer” when it comes to explaining why temperatures are rising at such different rates in the two regions. Read the full press release for all the details, or check out the brief explainer video, which you can also watch on our YouTube channel.

 

And don’t forget! To stay abreast of all the EGU’s events and activities, from highlighting papers published in our open access journals to providing news relating to EGU’s scientific divisions and meetings, including the General Assembly, subscribe to receive our monthly newsletter.

Announcing the winners of the EGU Photo Contest 2017!

The selection committee received over 300 photos for this year’s EGU Photo Contest, covering fields across the geosciences. Participants at the 2017 General Assembly have been voting for their favourites throughout the week  of the conference and there are three clear winners. Congratulations to 2017’s fantastic photographers!

Penitentes in the Andes by Christoph Schmidt (distributed by imaggeo.egu.eu). This photo was taken in the Bolivian Andes at an altitude of around 4400 m. The climatic conditions favour the formation of so-called penitents, i.e. long and pointed remains of a formerly comprehensive snow field.

Symbiosis of fire, ice and water by Michael Grund (distributed by imaggeo.egu.eu). This picture was taken at Storforsen, an impressive rapid in the Pite River in northern Sweden.

Movement of the ancient sand by Elizaveta Kovaleva (distributed by imaggeo.egu.eu). In the Zion National Park you can literally touch and see the dynamic of the ancient sand dunes.

Imaggeo is the EGU’s online open access geosciences image repository. All geoscientists (and others) can submit their photographs and videos to this repository and, since it is open access, these images can be used for free by scientists for their presentations or publications, by educators and the general public, and some images can even be used freely for commercial purposes. Photographers also retain full rights of use, as Imaggeo images are licensed and distributed by the EGU under a Creative Commons licence. Submit your photos at http://imaggeo.egu.eu/upload/.

Extraordinary iridescent clouds inspire Munch’s ‘The Scream’

Screaming clouds

Edvard Munch’s series of paintings and sketches ‘The Scream’ are some of the most famous works by a Norwegian artist, instantly recognisable and reproduced the world over. But what was the inspiration behind this striking piece of art?

The lurid colours and tremulous lines have long been thought to represent Munch’s unstable state of mind; a moment of terror caught in shocking technicolour. At the same time, scientists have recently identified the connection between the great works of artists such as William Turner and the red and orange sunsets which can be a result of the global impact of volcanic aerosols. However, research presented this week at the European Geosciences Union General Assembly in Vienna by atmospheric scientists in Oslo Norway, suggests that the painting might show us evidence of something much stranger, and rarer – nacreous clouds.

Nacreous or mother-of-pearl clouds, are an extremely rare form of cloud created 20-30km above sea level – in the polar stratosphere when the air is extremely cold (between -80 and -85 degrees centigrade) and exceptionally humid,. So far observed mostly in the Scandinavian countries, these clouds are formed of microscopic and uniform particles of ice, orientated into thin clouds. When the sun is below the horizon (before sunrise or after sunset), these clouds are illuminated in a surprisingly vibrant way blazing across the sky in swathes of red, green, blue and silver. They have a distinctive wavy structure as the clouds are formed in the lee-waves behind mountains.

In 2014, these clouds were seen again over the skies of Oslo and given their extreme colouration and unexpected appearance, a photographer, Svein Fikke, immediately thought of Munch’s work. This perceived similarity between the mother of pearl clouds and the striking clouds and sense of tension in the painting is only reinforced when reading Munch’s writings about his experiences on the day that inspired the painting.

“I went along the road with two friends – the sun set

I felt like a breath of sadness –

– The sky suddenly became bloodish red

I stopped, leant against the fence, tired to death – watched over the

Flaming clouds as blood and sword

The city – the blue-black fjord and the city

– My friends went away – I stood there shivering from dread – and

I felt this big, infinite scream through nature”

                            Edvard Munch’s Diary Notes 1890-1892 (Tøjner and Gundersen, 2013)

Scientists have, in the past, used artworks to infer environmental conditions; from paintings of the ‘frost fairs’ held on the River Thames that show the gradual environmental change in Europe, to the discovery that several artists depict the influence of volcanic aerosols on global atmosphere in their paintings.

In a study conducted in 2007 (and 2014), scientists found that the visible impact that volcanic aerosols have on the atmosphere has in fact been recorded in the works of many of the great masters – particularly William Turner (Zerefos et al, 2007)). Several of Turner’s paintings depict sunsets with a distinct red/orange hue, distinct from his usual work of other years. This was correlated with significant volcanic eruptions in the same time period and the researchers found that these reddish paintings were all created in the years of, or immediately following, a major eruption (shown in the graph below).

Graph to show the relationship between colour and volcanic aerosols (a)The mean annual value of R/G measured on 327 paintings. (b)The percentage increase from minimum R/G value shown in (a). (c)The corresponding Dust Veil Index (DVI). The numbered picks correspond to different eruptions as follows: 1. 1642 (Awu, Indonesia-1641), 2. 1661 (Katla, Iceland-1660), 3. 1680 (Tongkoko and Krakatau, Indonesia-1680), 4. 1784 (Laki, Iceland-1783), 5. 1816 (Tambora, Indonesia-1815), 6. 1831 (Babuyan, Philippines-1831), 7. 1835 (Coseguina, Nicaragua-1835). 8. 1883 (Krakatau, Indonesia-1883). From Zerefos et al (2007).

For many years ‘The Scream’ was thought to also show the influence of a volcanic eruption, most likely the catastrophic eruption of Krakatoa in 1883 (described here by Volcanologist David Pyle), but whereas volcanic skies tend to tint the whole sky a red/orange, the skies in the scream have a distinct pattern, only seen in these extremely rare nacreous clouds.

How rare are they? Well, researcher Dr Helene Muri, a researcher based at the University of Oslo, who presented the research at the press conference, said that in her lifetime living mostly in Norway as an atmospheric researcher she has only seen them once. And what about Munch’s feeling of dread and ‘breath of sadness’?

Well, having a glowing swathe of iridescent petrol coloured clouds flare into bright relief after sunset, only for them to disappear 30 minutes later would be pretty shocking for any of us, even in our modern days of fluorescent streetlamps and light polluted skies.

By Hazel Gibson, EGU Press Assistant at the EGU 2017 General Assembly

Follow

Get every new post on this blog delivered to your Inbox.

Join other followers: