GeoLog

Natural Hazards

GeoTalk: The anomaly in the Earth’s magnetic field which has geophysicists abuzz

GeoTalk: The anomaly in the Earth’s magnetic field which has geophysicists abuzz

Geotalk is a regular feature highlighting early career researchers and their work. In this interview we speak to Jay Shah, a PhD student at Imperial College London, who is investigating the South Atlantic Anomaly, a patch over the South Atlantic where the Earth’s magnetic field is weaker than elsewhere on the globe. He presented some of his recent findings at the 2017 General Assembly.

First, could you introduce yourself and tell us a little more about your career path so far?

I’m currently coming to the end of my PhD at Imperial College London. For my PhD, I’ve been working with the Natural Magnetism Group at Imperial and the Meteorites group at the Natural History Museum, London to study the origin of magnetism in meteorites, and how meteoritic magnetism can help us understand early Solar System conditions and formation processes.

Before my PhD I studied geology and geophysics, also at Imperial, which is when I studied the rocks that I spoke about at the 2017 EGU General Assembly.

What attracted you to the Earth’s magnetic field?

Jay operates the Vibrating Sample Magnetometer at the lab at Imperial. Credit: Christopher Dean/Jay Shah

My initial interest in magnetism, the ‘initial spark’ if you like, was during my undergraduate, when the topic was introduced in standard courses during my degree.

The field seemed quite magical: palaeomagnetists [scientists who study the Earth’s magnetic field history] are often known as palaeomagicians. But it’s through rigorous application of physics to geology that palaeomagicians can look back at the history of the Earth’s magnetic field recorded by rocks around the world. I was attracted to the important role palaeomagnetism has played in major geological discoveries such as plate tectonics and sea-floor spreading.

Then, during my undergraduate I had the opportunity to do some research alongside my degree, via the ‘Undergraduate Research Opportunities Programme’ at Imperial. It was certainly one of the bonuses of studying at a world-class research university where professors are always looking for keen students to help move projects forward.

I was involved in a project which focused on glacial tillites [a type of rock formed from glacial deposits] from Greenland to look into inclination shallowing; which is a feature of the way magnetism is recorded in rocks that can lead to inaccurate calculation of palaeolatitutdes [the past latitude of a place some time in the past]. Accurate interpretation of the direction of the Earth’s magnetic field recorded by rocks is essential to reconstructing the positions of continents throughout time.

This was my first taste of palaeomagnetism and opened the doors to the world of research.

So, then you moved onto a MSci where one of your study areas is Tristan da Cunha, a volcanic island in the South Atlantic. The location of the island means that you’ve dedicated some time to studying the South Atlantic Anomaly (SAA). So, what is it and why is it important?

The SAA is a present day feature of the magnetic field and has existed for the past 400 years, at least, based on observations. It is a region in the South Atlantic Ocean where the magnetic field is weaker than it is expected to be at that latitude.

The Earth’s magnetic field protects the planet and satellites orbiting around Earth from charged particles floating around in space, like the ones that cause aurorae. The field in the SAA is so weak that space agencies have to put special measures in place when their spacecraft orbit over the region to account for the increased exposure to radiation. The Hubble telescope, for example, doesn’t take any measurements when it passes through the SAA and the International Space Station has extra shielding added to protect the equipment and astronauts.

If you picture the Earth’s magnetic field:  it radiates from the poles towards the Earth’s equator, like butterfly wings extending out of the planet. In that model, which is what palaeomagnetic theory is based on, it is totally unexpected to have a large area of weakness.

Earth’s magnetic field connects the North Pole (orange lines) with the South Pole (blue lines) in this NASA-created image, a still capture from a 4-minute excerpt of “Dynamic Earth: Exploring Earth’s Climate Engine,” a fulldome, high-resolution movie. Credit: NASA Goddard Space Flight Center

We also know that the Earth’s magnetic field reverses (flips its polarity), on average, every 450,000 years. However, it has been almost twice as long since we have had a flip, which means we are ‘overdue’ a reversal. People like to look for signs that the field will reverse soon; could it be that the SAA is a feature of an impending (in geological time!) reversal? So, it becomes important to understand the SAA in that respect too.

So, how do you approach this problem? If the SAA is something you can’t see, simply measure, how do you go about studying it?

Palaeomagnetists can look to the rock record to understand the history of the Earth magnetic field.

Volcanic rocks best capture Earth’s magnetic field because they contain high percentages of iron bearing minerals, which align themselves with the Earth’s magnetic field as the lavas cool down after being erupted. They provide a record of the direction and the strength of the magnetic field at the time they were erupted.

In particular, I’ve been studying lavas from Tristan da Cunha (a hotspot island) in the Atlantic Ocean similar in latitude to South Africa and Brazil. There are about 300 people living on the island, which is still volcanically active. The last eruption on the island was in 1961. In 2004 there was a sub-marine eruption 24 km offshore.

Jürgen Matzka (GFZ Potsdam) collected hundreds and hundreds of rock cores from Tristan da Cunha on sampling campaigns back in 2004 and 2006.

We recently established the age of the lavas we sampled as having erupted some 46 to 90 thousand years ago. Now that we know the rock ages, we can look at the Earth’s magnetic field during this time window.

Why is this time window important?

These lavas erupted are within the region of the present day SAA, so we can look to see whether any similar anomalies to the Earth’s magnetic field existed in this time window.

So, what did you do next?

When Jurgen looked at the samples, he too was trying to find something out about the SAA, but the samples reviled nothing.

Initial analyses of these rocks focused on the direction of the magnetic field recorded by the rocks. The directional data can be used to trace back past locations of the Earth’s magnetic poles.

Then, during my master’s research dissertation I had the opportunity to experiment on the rocks from Tristan da Cunha with the focus on palaeointensity [the ancient intensity of the Earth’s magnetic field recorded by the rocks]. We found that they have the same weak signature we observe today in the SAA but in this really old time window.

The rocks from Tristan da Cunha, 46 to 90 thousand years ago, recorded a weaker magnetic field strength compared to the strength of the magnetic field of the time recorded by other rocks around the world.

Some of the lavas sampled on Tristan da Cunha. Credit: Jürgen Matzka

What does this discovery tell us about the SAA?

I mentioned at the start of the interview that, as far as we thought, the anomaly didn’t extend back more than 400 years ago – it’s supposed to be a recent feature of the field. Our findings suggest that the anomaly is a persistent feature of the magnetic field. Which is important, because researchers who simulate how the Earth’s magnetic field behaved in the past don’t see the SAA in simulations of the older magnetic field.

It may be that the simulations are poorly constrained. There are far fewer studies (and samples) of the Earth’s magnetic directions and strengths from the Southern Hemisphere. This inevitably leads to a sampling bias, meaning that the computer models don’t have enough data to ‘see’ the feature in the past.

However, we are pretty certain that the SAA isn’t as young as the simulations indicate. You can also extract information about the ancient magnetic field from archaeological samples. As clay pots are fired they too have the ability to record the strength and direction of the magnetic field at the time. Data recorded in archaeological samples from southern Africa, dating back to 1250 to 1600 AD also suggest the SAA existed at the time.

Does the fact that the SAA is older than was thought mean it can’t used be to indicate a reversal?

It could still be related to a future reversal – our findings certainly don’t rule that out.

However, they may be more likely to shed some light on how reversals occur, rather than when they will occur.

It’s been suggested that the weak magnetic anomaly may be a result of the Earth’s composition and structure at the boundary between the Earth’s core and the mantle (approximately 3000 km deep, sandwiched between the core and the Earth’s outermost layer known as the crust). Below southern Africa there is something called a large low shear velocity province (LLSVP), which causes the magnetic flux to effectively ‘flow backwards’.

These reversed flux patches are the likely cause of the weak magnetic field strength observed at the surface, and could well indicate an initiating reversal. However, the strength of the Earth’s magnetic field on average at present is stronger than what we’ve seen in the past prior to field reversals.

The important thing is the lack of data in the southern hemisphere. Sampling bias is pervasive throughout science, and it’s been seen here to limit our understanding of past field behaviour. We need more data from around the world to be able to understand past field behaviour and to constrain models as well as possible.

Sampling bias is pervasive throughout science, and it’s been seen here to limit our understanding of past field behaviour. This image highlights the problem (black dots = a sampling location). Modified from an image in the supporting materials of Shah, J., et al. 2016. Credit: Jay Shah.

You are coming towards the end of your PhD – what’s next?

So I moved far away from Tristan da Cunha for my PhD and have been looking at the magnetism recorded by meteorites originating from the early Solar System. I’d certainly like to pursue further research opportunities working with skills I’ve gained during my PhD. I want to continue working in the magical world of magnetism, that’s for sure! But who knows?

Something you said at the start of the interview struck me and is a light-hearted way to round-off our chat. You said that palaeomagnetism are often referred to as ‘paleaomagicians’ by others in the Earth sciences, why is that so?

Over the history of the geosciences, palaeomagntists have contributed to shedding light on big discoveries using data that not very many people work with. It’s not a big field within the geosciences, so it’s shrouded in a bit of mystery. Plus, it’s a bit of a departure from traditional geology, as it draws so heavily from physics. And finally, it’s not as well established as some of the other subdisciplines within geology and geophysics, it’s a pretty young science.  At least, that’s why I think so, anyway!

Interview by Laura Roberts Artal, EGU Communications Officer

References and further reading

Shah, J., Koppers, A.A., Leitner, M., Leonhardt, R., Muxworthy, A.R., Heunemann, C., Bachtadse, V., Ashley, J.A. and Matzka, J.: Palaeomagnetic evidence for the persistence or recurrence of geomagnetic main field anomalies in the South AtlanticEarth and Planetary Science Letters441, pp.113-124, doi: 10.1016/j.epsl.2016.02.039, 2016.

Shah, J., Koppers, A.A., Leitner, M., Leonhardt, R., Muxworthy, A.R., Heunemann, C., Bachtadse, V., Ashley, J.A. and Matzka, J.: Paleomagnetic evidence for the persistence or recurrence of the South Atlantic geomagnetic Anomaly. Geophysical Research Abstracts, Vol. 19, EGU2017-7555-3, 2017, EGU General Assembly 2017.

Mexico earthquakes: What we know so far

Mexico earthquakes: What we know so far

On Friday 8 September 2017 at 04:49 am UTC, a magnitude 8.1 earthquake hit off the coast of Mexico, 87 km SW of Pijijiapan. According to the U.S. Geological Survey, the epicentre was at 15.07 N, 93.72 W at a depth of about 69.7 km. Yesterday, another strong (magnitude 7.1) earthquake hit central Mexico, 55 km SSW of the city of Puebla and 120 km south of Mexico City.

Despite the lower magnitude, yesterday’s earthquake, which struck at a depth of 51 km, has caused widespread destruction. At the time of writing, official estimates put the death toll at 217 (according to Mexico’s National Coordinator for Civil Protection, Luis Felipe Puente), with shaking causing damage to and the collapse of hundreds of buildings in Mexico City and surrounding areas.

“The M 7.1 earthquake was much closer to Mexico City, a city build on a dried lake bed; this caused presumably (needs to be confirmed by data) much higher shaking in the densely populated capital then the larger, but farther M 8.1 event,” explains Martin Mai, President of the EGU’s Seismology Division.

Based on current information, the U.S. Geological Survey estimates that significant causalities are likely in the region. Given the mix of vulnerable and earthquake resistant structures, the economic loss is also expected to be high. For more information visit impact pages of the event on the USGS website.

It is too early to say whether a link exists between the two September earthquakes.

“It could be that stress changes caused by the M 8.1 event brought the fault (system) on which the M 7.1 earthquake happened closer to failure; but this requires detailed quantitative analysis,” clarifies Mai.

Editor’s note: This post will be update as more information about the earthquake becomes available.

Further reading and resources:

U.S. Geological Survey overview of 19.09.2017 M 7.1 earthquake (includes interactive, shake and regional information maps)

U.S. Geological Survey overview of 08/09.2017 M 8.1 earthquake (includes interactive, shake and regional information maps, as well as finite fault results and moment tensor information)

Temblor blog post on M 7.1 earthquake

Temblor blog post on M 8.1 earthquake

Did Mexico dodge a bullet in last week’s M=8.1 earthquake? (Temblor blog post on dynamics of 8th September quake)

European-Mediterranean Seismological Centre information about yesterday’s earthquake

SSN (Mexico) page about yesterday’s earthquake (in Spanish)

GFZ GEOFON Global Seismic Network event page for yesterday’s earthquake

Educators: apply now to take part in the 2018 GIFT workshop!

Educators: apply now to take part in the 2018 GIFT workshop!

The General Assembly is not only for researchers but for teachers and educators with an interest in the geosciences also. Every year the Geosciences Information For Teachers (GIFT) is organised by the EGU Committee on Education to bring first class science closer to primary and high school teachers.

The topic of the 2018 edition of GIFT is ‘Major events that shaped the Earth’. This year’s workshop will be taking place on 9–11 April 2018 at the EGU General Assembly in Vienna, Austria.

Teachers from Europe and around the world can apply to participate in the 2018 edition of GIFT, and to receive a travel and accommodation stipend to attend the workshop, by November 15. Application information is available for download in PDF format, a document which also includes the preliminary programme of the workshop.

Not sure what to expect? More information about GIFT workshops can be found in the GIFT section of the EGU website. You can also take a look at a blog post about the 2015 workshop and also learn what the workshop is like from a teacher’s perspective here. You might also find videos of the 2017 workshop useful too.

 

Is it an earthquake, a nuclear test or a hurricane? How seismometers help us understand the world we live in

Is it an earthquake, a nuclear test or a hurricane? How seismometers help us understand the world we live in

Although traditionally used to study earthquakes, like today’s M 8.1 in Mexico,  seismometers have now become so sophisticated they are able to detect the slightest ground movements; whether they come from deep within the bowels of the planet or are triggered by events at the surface. But how, exactly, do earthquake scientists decipher the signals picked up by seismometers across the world? And more importantly, how do they know whether they are caused by an earthquake, nuclear test or a hurricane?  

To find out we asked Neil Wilkins (a PhD student at the University of Bristol) and Stephen Hicks (a seismologist at the University of Southampton) to share some insights with our readers.


Seismometers are highly sensitive and they are able to detect a magnitude 5 earthquake occurring on the other side of the planet. Also, most seismic monitoring stations have sensors located within a couple of meters of the ground surface, so they can be fairly susceptible to vibrations at the surface. Seismologists can “spy” on any noise source, from cows moving in a nearby field to passing trucks and trains.

A nuclear test

On Sunday the 3rd of September, North Korea issued a statement announcing it had successfully tested an underground hydrogen bomb. The blast was confirmed by seismometers across the globe. The U.S.  Geological Survey registered a 6.3 magnitude tremor, located at the Punggye-ri underground test site, in the northwest of the country. South Korea’s Meteorological Administration’s earthquake and volcano center also detected what is thought to be North Korea’s strongest test to date.

However they occur, explosions produce ground vibrations capable of being detected by seismic sensors. Mining and quarry blasts appear frequently at nearby seismic monitoring stations. In the case of nuclear explosions, the vibrations can be so large that the seismic waves they produce can be picked up all over the world, as in the case of this latest test.

It was realised quite early in the development of nuclear weapons that seismology could be used to detect such tests. In fact, the need to have reliable seismic data for monitoring underground nuclear explosions led in part to the development of the Worldwide Standardized Seismograph Network in the 1960s, the first of its kind.

Today, more than 150 seismic stations are operating as part of the International Monitoring System (IMS) to detect nuclear tests in breach of the Comprehensive Test-Ban Treaty (CTBT), which opened for signatures in 1996. The IMS also incorporates other technologies, including infrasound, hydroacoustics and radionuclide monitoring.

The key to determining whether a seismic signal is from an explosion or an earthquake lies in the nature of the waves that are present. There are three kinds of seismic wave seismologists can detect. The fastest, called Primary (P) waves, cause ground vibrations in the same direction that they travel, similar to sound waves in the air. Secondary (S) waves cause shaking in a perpendicular direction. Both P and S waves travel deep through the Earth and are known collectively as body waves. In contrast, the third type of seismic waves are known as surface waves, because they are trapped close to the surface of the Earth. In an earthquake, it is normally surface waves that cause the most ground shaking.

In an explosion, most of the seismic energy is released outwards as the explosive material rapidly expands. This means that the largest signal in the seismogram comes as P waves. Explosions therefore have a distinctive shape in the seismic data when compared with an earthquake, where we expect S and surface waves to have higher amplitude.

Forensic seismologists can therefore make measurements of the seismic data to determine whether there was an explosion. An extra indication that a nuclear test occurred can also be revealed by measuring the depth of the source of the waves, as it would not be possible to place a nuclear device deeper than around 10 km below the surface.

Yet while seismic data can tell us that there has been an explosion, there is nothing that can directly identify that explosion as being nuclear. Instead, the IMS relies on the detection of radioactive gases that can leak from the test site for final confirmation of what kind of bomb was used.

The figure shows (at the bottom) the seismic recording of the latest test in North Korea made at NORSAR’s station in Hedmark, Norway. The five upper traces show recordings at the same station for the five preceding tests, conducted by North Korea in 2006, 2009, 2013 and 2016 (two explosions in 2016). The 2017 test, is as can be seen from this figure, clearly the strongest so far. Credit: NORSAR.

When North Korea conducted a nuclear test in 2013, radioactive xenon was detected 55 days later, but this is not always possible. Any detection of such gases depends on whether or not a leak occurs in the first place, and how the gases are transported in the atmosphere.

Additionally, the seismic data cannot indicate the size of the nuclear device or whether it could be attached to a ballistic missile, as the North Korean government claims.

What seismology can give us is an idea of the size of the explosion by measuring the seismic magnitude. This is not straightforward, and depends on knowledge of exactly how deep the bomb was buried and the nature of the rock lying over the test site. However, by comparing the magnitude of this latest test with those from the previous five tests conducted in North Korea, we can see that this is a much larger explosion.

The Norwegian seismic observatory NORSAR has estimated a blast equivalent to 120 kilotons of TNT, six times larger than the atomic bomb dropped on Nagasaki in 1945, and consistent with the expected yield range of a hydrogen bomb.

Hurriquakes?

Nuclear tests are not the only hazard keeping our minds busy in the past few weeks. In the Atlantic, Hurricanes Harvey, Irma and Katia have wreaked havoc in the southern U.S.A, Mexico and the Caribbean.

Hurricanes in the Atlantic can occur at any time between June and November. According to hurricane experts, we are at the peak of the season. It is not uncommon for storms to form in rapid succession between August, September and October.

The National Hurricane Centre (NHC) is the de facto regional authority for producing hurricane forecasts and issuing alerts in the Atlantic and eastern Pacific. For their forecasts, meteorologists use a combination of on the ground weather sensors (e.g. wind, pressure, Doppler radar) and satellite data.

As hurricane Irma tore its way across the Atlantic, gaining strength and approaching the Caribbean island of Guadeloupe, local seismometers detected its signature, sending the global press into a frenzy. It may come as a slight surprise to some people that storms and hurricanes also show on seismometers.

However, a seismometer detecting an approaching hurricane is not actually that astonishing. There is no evidence to suggest that hurricanes directly cause earthquakes, so what signals can we detect from a hurricane? Rather than “signals”, seismologists tend to refer to this kind of seismic energy as “noise” as it thwarts our ability to see what we’re normally looking out for – earthquakes.

The seismic noise from a storm doesn’t look like distinct “pings” that we would see with an earthquake. What we see are fairly low-pitched “hums” that gradually get louder in the days and hours preceding the arrival of a storm. As the storm gets closer to the sensor, these hums turn into slightly higher-pitched “rustling”. This seismic energy then wanes as the hurricane drifts away. We saw this effect clearly for Hurricane Irma with recordings from a seismometer on the island of Guadeloupe.

What causes these hums and rustles? If you look at the frequency content of seismic data from any monitoring station around the globe, noise levels light up at frequencies of ~0.2 Hz (5 s period). We call these hums “microseism”. Microseism is caused by persistent seismic waves unrelated to earthquakes, and it occurs over huge areas of the planet.  One of the strongest sources of microseism is caused by ocean waves and swell. During a hurricane, swell increases and ocean waves become more energetic, eventually crashing into coastlines, transferring seismic energy into the ground. This effect is more obvious on islands as they are surrounded by water.

As the hurricane gets closer to the island, wind speeds dramatically increase and may dwarf the noise level of the longer period microseism. Wind rattles trees, telegraph poles, and the surface itself, transferring seismic energy into the ground and moving the sensitive mass inside the seismometer. This effect causes higher-pitched “rustles” as the centre of the storm approaches. Gusts of wind can also generate pressure changes inside the seismometer installation and within the seismometer itself, generating longer period fluctuations.

During Hurricane Irma, a seismic monitoring station located in the Dutch territory of St. Maarten clearly recorded the approach of the storm, leading to an intense crescendo as the eyewall crossed the area. As the centre of the eye passed over, the seismometer seems to have recorded a slightly lower noise level. This observation could be due to the calmer conditions and lower pressure within the eye. The station went down shortly after, probably from a power outage or loss in telemetry which provides the data in real-time.

Seismometers measuring storms is not a new observation. Recently, Hurricane Harvey shook up seismometers located in southern Texas. Even in the UK, the approach of winter storms across the Atlantic causes much higher levels of microseism.

It would be difficult to use seismometer recordings to help forecast a hurricane – the recordings really depend on how close the sensor is to the coast and how exposed the site is to wind. In the event of outside surface wind and pressure sensors being damaged by the storm, protected seismometers below the ground could possibly prove useful in delineating the rough location of the hurricane eye, assuming they maintain power and keep sending real-time data.

At least several seismic monitoring stations in the northern Antilles region were put out of action by the effects of the Hurricane. Given the total devastation on some islands, it is likely that it will take at least several months to bring these stations back online. The Lesser Antilles are a very tectonically active and complex part of Earth; bringing these sensors back into operation will be crucial to earthquake and volcano hazard monitoring in the region.

By Neil Wilkins (PhD student at the University of Bristol) and Steven Hicks (a seismologist at the University of Southampton)

References and further reading

GeoSciences Column: Can seismic signals help understand landslides and rockfalls?

NORSAR Press Release: Large nuclear test in North Korea on 3 September 2017

The Comprehensive Nuclear-Test-Ban Organization Press Release: CTBTO Executive Secretary Lassina Zerbo on the unusual seismic event detected in the Democratic People’s Republic of Korea

First Harvey, Then Irma and Jose. Why? It’s the Season (The New York Times)

NOAA  National Hurricane Center

IRIS education and outreach series: How does a seismometer work?

Follow

Get every new post on this blog delivered to your Inbox.

Join other followers: