GeoLog

Jobs

We are hiring: be our next Science Policy Officer!

We are hiring: be our next Science Policy Officer!

Do you have an interest in science policy and the geosciences? Then this post might be just right for you!

We are looking to hire a Science Policy Officer to continue developing the EGU’s policy programme, which is aimed at building bridges between geoscientists and European policymakers, engaging the EGU membership with public policy, and informing decision makers about the Earth, planetary and space sciences. The officer will be tasked with mapping out policy opportunities for the EGU, setting up links between EGU members and European decision makers, and developing training and networking events for scientists to engage with policy.

We are looking for a good team player with excellent interpersonal, organisational, and communication skills to fill this role. The successful applicant will have a postgraduate degree (e.g. MA, MSc), preferably in the geosciences or related scientific disciplines or in public policy. Candidates should also have experience in communicating with policymakers, knowledge of policymaking at the European level and an expert command of English. Non-European nationals are eligible to apply, provided they have some knowledge of the European decision-making system.

To get a feel for what the position involves why not read this post by the current post holder, Sarah Connors? Be sure to also check the GeoPolicy column of the blog for even more insight into the work.

The deadline for application is 15 November 2016. Further details about the position and how to apply can be found here.

Feel free to contact Dr Bárbara Ferreira, the Media and Communications Manager, at media@egu.eu or on +49-89-2180-6703 if you have any questions about the position.

GeoSciences Column: Improving together – science writing and football

GeoSciences Column: Improving together – science writing and football

Writing is something that those pursuing a career in academia are expected to be good at. It is a requirement of the job, yet it is a skill few get any formal training in and simply rely on the old saying that practice makes perfect. But what if there is another way? Mathew Stiller-Reeve is a co-founder of ClimateSnack, a writing group organization, which aims to tackle the problem. In today’s post Mathew considers how the workings of a football team might reflect the successes of the writing groups that started in the ClimateSnack project.

The premise behind the ClimateSnack project is simple: We need to improve our writing in science. But many young researchers do not have access to good training initiatives, especially not continuous ones. So, maybe we should just mobilize ourselves; we can mobilize ourselves by starting writing groups and working together to improve. In ClimateSnack, early career scientists (ECS) start writing groups at their home institute. Participants write short popular science articles (usually 400-500 words), read them aloud, get feedback, and publish online. Several ClimateSnack writing groups sprouted up all over the world, however, only a few truly blossomed. What made some groups work and some not? We analyzed the answer to this question in our new paper. The style of a peer-review paper didn’t allow us to make fancy, lengthy analogies. But on GeoLog, I feel safe using football as an analogy to explain the workings of a writing group, and maybe infuse some of my own personal opinions too.

Football is a team sport, but you can play football completely alone and still become an expert. You can see this when you watch football freestylers (like Indi Cowie in the video) do their incredible tricks. Most of these tricksters likely play football with a whole team, but they don’t have to. The same applies to science writing and communication. You can become an expert in these skills by yourself, and some people prefer this. But for ECS’s who like to work together, ClimateSnack would give them the opportunity to improve as part of a team: a writing group.

But what was needed for the teams to work successfully? And what did we learn from the teams that disbanded after a few training sessions?

Successful football teams have good leadership, and in particular good captains. Good captains bring out the best in their players, encourage them when things get hard and manage conflict. These elements were reflected in the ClimateSnack writing groups. The strong leaders guided the groups and encouraged participants to contribute in sensitive ways. However, strong leaders don’t stick around forever. Just as other football clubs often buy captains, writing group leaders also moved on; they finished PhDs and got jobs far, far away. New captains needed to be found, but this was always a challenge.

Can the workings of a football team reflect the successes of the writing groups that started in the ClimateSnack project? Credit: Syaza , distributed via gify.

Can the workings of a football team reflect the successes of the writing groups that started in the ClimateSnack project? Credit: Syaza , distributed via gify.

I am absolutely not saying that the leaders of the disbanded other groups were poor captains! Even a potentially good captain cannot lead a team if he/she doesn’t know the rules of the game. If the rules are not clear then the whole team cannot play properly together. They need to know where the goal is; they need to understand the game’s objectives. And this is where the ClimateSnack management team (where I am most to blame!) was shortsighted. We failed to properly communicate the objectives and aims of a ClimateSnack writing group and the writing process we suggested.

Even if a football team knows the rules and has a good captain, they won’t get far if morale is low, or if the players haven’t got time to train or turn up for matches. We noticed that a lot of the motivation within writing groups was linked to socializing. Just as some amateur football teams might go to the pub after training, one successful writing group planned their meetings just before the Department coffee break so everyone could socialize after the hard work was done.

What other elements need to be in place for a football team to work?

The right number of players is an absolute necessity. Most people have seen how a football team struggles after a couple of players have been sent off. You may have also heard about players going to other clubs if they don’t get to play enough matches. The ClimateSnack group meetings also faced challenges with the number of participants. One group had so many participants to start with that it became difficult to manage. It is difficult for everyone to get something out of a peer feedback discussion if too many are involved.  In this instance, participants lost interest and numbers decreased steadily and finally to a level where too few attended and the group disbanded. In our Bergen group, we always find that the best discussions happen with 4-6 people at the meetings. If we get far more than this in the future, then we will likely split into smaller discussion groups which work more effectively.

Effective writing groups demand some kind of time commitment from the participants. Good writing requires practice, just like football. Football players often train several times a week. With ClimateSnack, we did not have the luxury of asking the members for this level of commitment. Students are already under pressure from a variety of different sources. They need to complete mandatory courses, collect data, attend conferences, and work as teaching assistants. People who play football have a passion for the game and make time for it. Unfortunately, few young researchers have a passion for writing (cards on the table: I was exactly the same. It took a lot of time before I started enjoying writing). Therefore, something voluntary like a writing group will often fall by the wayside when to-do lists are being compiled.

A football team celebrates together after scoring a goal!

A football team celebrates together after scoring a goal! ( Lewes Ladies 2 BHA 1 4 May 2014. 645 , credit: James Boyes distributed via a href=” https://www.flickr.com/”> flickr).

Some ClimateSnack teams started scoring goals! ClimateSnack participants have published over 100 articles online, some of which articles have appeared in newspapers here in Norway. Many participants feel that their writing has improved. Some participants have even started receiving better peer reviews for their scientific publications. Other participants have also used their new network to organize science communication workshops. Even if many writing groups didn’t find a footing, for some people the concept worked really well. And many people have made good friends!

Just like with many football teams, they are more likely to score more goals if they have generous sponsors. Football clubs need to buy kits, pay for pitch maintenance and travel to play other teams. A writing group project like ClimateSnack ideally needs some funding to let new ideas flourish and allow different groups to interact and learn from each other. The ClimateSnack founders had big ambitions to create an international online community where ECS would interact and peer-review each other’s articles across borders. We secured some funding to update the website, but never to implement the kind of things needed to properly promote an international community.

Despite the challanges we encountered, we have seen that writing groups can be a really effective way to learn writing skills together (like ours in Bergen in the photo). Maybe they are so effective that universities should consider implementing them in curricula for all students at all levels. With this in mind, I’ll indulge with a final football-related analogy. When I was a child, we had to play football at school. I didn’t like it! However, now I appreciate that I got fit and healthier, and I learned skills that I could apply to other sports in the process. You see the link to learning basic writing skills?

Indeed, if you think about it, I could have applied the football team analogy to any aspect of research education: We can learn anything alone, but it can be more enjoyable and rewarding if we learn together. However, I think the analogy works well with communication. After all, this is the part of the research process where we really have to put ourselves out there, we have to receive feedback, debate our results, and defend our conclusions, often in open forums. These are all elements at the forefront of writing group dynamics.

Read more about the highs and lows of our ClimateSnack project in our paper in the recent HESS/NHESS special issue on Effective Science Communication and Education in Hydrology and Natural Hazards.

By Mathew Stiller-Reeve, co-founder of ClimateSnack and researcher at Bjerknes Centre for Climate Research, Bergen, Norway

Reference

Stiller-Reeve, M. A., Heuzé, C., Ball, W. T., White, R. H., Messori, G., van der Wiel, K., Medhaug, I., Eckes, A. H., O’Callaghan, A., Newland, M. J., Williams, S. R., Kasoar, M., Wittmeier, H. E., and Kumer, V.: Improving together: better science writing through peer learning, Hydrol. Earth Syst. Sci., 20, 2965-2973, doi:10.5194/hess-20-2965-2016, 2016.

Who do you think most deserves the title of the Mother of Geology?

Who do you think most deserves the title of the Mother of Geology?

Much ink is spilled hailing the work of the early fathers of geology – and rightly so! James Hutton is the mind behind the theory of uniformitarianism, which underpins almost every aspect of geology and argues that processes operating at present operated in the same manner over geological time, while Sir Charles Lyell furthered the idea of geological time. William Smith, the coal miner and canal builder, who produced the first geological map certainly makes the cut as a key figure in the history of geological sciences, as does Alfred Wegener, whose initially contested theory of continental drift forms the basis of how we understand the Earth today.

Equally deserving of attention, but often overlooked, are the women who have made ground-breaking advances to the understanding of the Earth. But who the title of Mother of Geology should go to is up for debate, and we want your help to settle it!

In the style of our network blogger, Matt Herod, we’ve prepared a poll for you to cast your votes! We’ve picked five leading ladies of the geoscience to feature here, but they should only serve as inspiration. There are many others who have contributed significantly to advancing the study of the planet, so please add their names and why you think they are deserving of the title of Mother of Geology, in the comment section below.

We found it particularly hard to find more about women in geology in non-English speaking country, so if you know of women in France, Germany, Spain, etc. who made important contributions to the field, please let us know!

Mary Anning (1799–1847)

Credited to 'Mr. Grey' in Crispin Tickell's book 'Mary Anning of Lyme Regis' (1996).

Mary Anning. Credited to ‘Mr. Grey’ in Crispin Tickell’s book ‘Mary Anning of Lyme Regis’ (1996).

Hailing from the coastal town of Lyme Regis in the UK, Mary was born to Richard Anning, a carpenter with an interest in fossil collecting. On the family’s doorstep were the fossil-rich cliffs of the Jurassic coast. The chalky rocks provided a life-line to Mary, her brother and mother, when her father died eleven years after Mary was born. Upon his death, Richard left the family with significant debt, so Mary and her brother turned to fossil-collecting and selling to make a living.

Mary had a keen eye for anatomy and was an expert fossil collector. She and her brother are responsible for the discovery of the first Ichthyosaurs specimen, as well as the first plesiosaur.

When Mary started making her fossil discoveries in the early 1800s, geology was a burgeoning science. Her discoveries contributed to a better understanding of the evolution of life and palaeontology.

Mary’s influence is even more noteworthy given that she was living at a time when science was very much a man’s profession. Although the fossils Mary discovered where exhibited and discussed at the Geological Society of London, she wasn’t allowed to become a member of the recently formed union and she wasn’t always given full credit for her scientific discoveries.

Charlotte Murchinson (1788–1869)

Roderick and Charlotte Murchinson made a formidable team. A true champion of science, and geology in particular, Charlotte, ignited and fuelled her husband’s pursuit of a career in science after resigning his post as an Army officer.

Roderick Murchinson’s seminal work on establishing the first geologic sequence of Early Paleozoic strata would have not arisen had it not been for his wife’s encouragement. With Roderick, Charlotte travelled the length and breadth of Britain and Europe (along with notable friend Sir Charles Lylle), collecting fossils (one of the couple’s trips took them to Lyme Regis where they met and worked with Mary Anning, who later became a trusted friend) and studying the geology of the old continent.  Roderick’s first paper, presented at the Geological Society in 1825 is thought to have been co-written by Charlotte.

Not only was Charlotte a champion for the sciences, but she was a believer in gender equality. When Charles Lylle refused women to take part in his lectures at Kings Collage London, at her insistence he changed his views.

Florence Bascom (1862–1945)

By Camera Craft Studios, Minneapolis - Creator/Photographer: Camera Craft Studios, Minneapolis Medium: Black and white photographic print. Persistent Repository: Smithsonian Institution Archives Collection: Science Service Records, 1902-1965 (Record Unit 7091)

By Camera Craft Studios, Minneapolis – Creator/Photographer: Camera Craft Studios, Minneapolis. Persistent Repository: Smithsonian Institution Archives Collection: Science Service Records, 1902-1965 (Record Unit 7091)

Talk about a life of firsts: Florence Bascom, an expert in crystallography, mineralogy, and petrography, was the first woman hired by the U.S Geological Survey (back in 1896); she was the first woman to be elected to the Geological Society of America (GSA) Council (in 1924) and was the GSA’s first woman officer (she served as vice-president in 1930).

Florence’s PhD thesis (she undertook her studies at Johns Hopkins University, where she had to sit behind a screen during lectures so the male student’s wouldn’t know she was there!), was ground-breaking because she identified, for the first time, that rocks previously thought to be sediments were, in fact, metamorphosed lavas. She made important contributions to the understanding of the geology of the Appalachian Mountains and mapped swathes of the U.S.

Perhaps influenced by her experience as a woman in a male dominated world, she lectured actively and went to set-up the geology department at Bryn Mawr College, the first college where women could pursue PhDs, and which became an important 20th century training centre for female geologist.

Inge Lehmann (1888-1993)

There are few things that scream notoriety as when a coveted Google Doodle is made in your honour. It’s hardly surprising that Google made such a tribute to Inge Lehmann, on the 127th Anniversary of her birth, on 13th May 2015.

The Google Doodle celebrating Inge Lehmann's 127th birthday.

The Google Doodle celebrating Inge Lehmann’s 127th birthday.

A Danish seismologist born in 1888, Inge experienced her first earthquake as a teenager. She studied maths, physics and chemistry at Oslo and Cambridge Universities and went on to become an assistant to geodesist Niels Erik Nørlund. While installing seismological observatories across Denmark and Greenland, Inge became increasingly interested in seismology, which she largely taught herself. The data she collected allowed her to study how seismic waves travel through the Earth. Inge postulated that the Earth’s core wasn’t a single molten layer, as previously thought, but that an inner core, with properties different to the outer core, exists.

But as a talented scientist, Inge’s contribution to the geosciences doesn’t end there. Her second major discovery came in the late 1950s and is named after her: the Lehmann Discontinuity is a region in the Earth’s mantle at ca. 220 km where seismic waves travelling through the planet speed up abruptly.

Marie Tharp (1920-2006)

That the sea-floor of the Atlantic Ocean is traversed, from north to south by a spreading ridge is a well-established notion. That tectonic plates pull apart and come together along boundaries across the globe, as first suggested by Alfred Wegener, underpins our current understanding of the Earth. But prior to the 1960s and 1970s Wegener’s theory of continental drift was hotly debated and viewed with scepticism.

Bruce Heezen and Marie Tharp with the 1977 World Ocean’s Map. Credit: Marie Tharp maps, distributed via Flickr.

Bruce Heezen and Marie Tharp with the 1977 World Ocean’s Map. Credit: Marie Tharp maps, distributed via Flickr.

In the wake of the Second World War, in 1952, in the then under resourced department of Columbia University, Marie Tharp, a young scientist originally from Ypsilanti (Michigan), poured over soundings of the Atlantic Ocean. Her task was to map the depth of the ocean.

By 1977, Marie and her boss, geophysicist Bruce Heezen, had carefully mapped the topography of the ocean floor, revealing features, such as the until then unknown, Mid-Atlantic ridge, which would confirm, without a doubt, that the planet is covered by a thin (on a global scale) skin of crust which floats atop the Earth’s molten mantle.

Their map would go on to pave the way for future scientists who now knew the ocean floors weren’t vast pools of mud. Despite beginning her career at Columbia as a secretary to Bruce, Marie’s role in producing the beautiful world ocean’s map propelled her into the oceanography history books.

Over to you! Who do you think the title of the Mother of Geology should go to? We ran a twitter poll last week, asking this very question, and the title, undisputedly, went to Mary Anning. Do you agree?

By Laura Roberts, EGU Communications Officer

 

All references to produce this post are linked to directly from the text.

EGU, the European Geosciences Union, is Europe’s premier geosciences union, dedicated to the pursuit of excellence in the Earth, planetary, and space sciences for the benefit of humanity, worldwide. It is a non-profit international union of scientists with over 12,500 members from all over the world. Its annual General Assembly is the largest and most prominent European geosciences event, attracting over 11,000 scientists from all over the world.

This text was edited on 1 Septmember 2016 to correct the spelling of Weger. With thanks to Torbjörn Larsson for spotting the typo.

 

Follow

Get every new post on this blog delivered to your Inbox.

Join other followers: