GeoLog

GeoPolicy

GeoPolicy: Making a case for science at the United Nations

GeoPolicy: Making a case for science at the United Nations

This month’s GeoPolicy is a guest post by the International Council for Science (ICSU). Based in Paris, the organisation works at the science-policy interface on the international scale. Here, Heide Hackmann, Executive Director at ICSU, highlights key initiatives ensuring science is present within the United Nations (UN) and explains how ICSU and the scientific community can support these processes.

The past years were an extraordinary time for the UN, with key international agreements on disaster risk reduction, climate change, sustainable development and urbanization being concluded. The decisions taken in the last two years will shape global policy for decades. It was an exciting time for science, too – getting the Paris Agreement in place, for example, was after all a result of decades (centuries, actually) of research, and of science sounding the alarm on the effects of carbon emissions on the climate. Without the relentless work of the climate science community, the issue of climate change would never have received the political attention it needed, plunging humankind headlong into its dangerous consequences.

The UN policy cycle of the last two years started in 2015 with the Sustainable Development Goals and ended, in October 2016, with the New Urban Agenda, being agreed in Quito, Ecuador. Now is a good time to look back at some aspects of how and why science has been a part of the creation of these UN policy frameworks, and start a conversation about what its role could be in their implementation.

The idea that scientific progress should benefit society has been central to the mission of the International Council for Science (ICSU) since its foundation in 1931. Its membership consists of national scientific bodies (122 members, representing 142 countries), international scientific unions (31 members), as well as 22 associate members. Through its members the Council identifies major issues of importance to science and society and mobilizes scientists to address them. It facilitates interaction amongst scientists across all disciplines and from all countries and promotes the participation of all scientists—regardless of race, citizenship, language, political stance, or gender—in the international scientific endeavour.

A core part of the Council’s work relates to the provision of scientific input and advice to inform policy development. It has a long history in this arena, having for example in the 1950s catalyzed international climate research through its organization of the International Geophysical Year (IGY).  Following the IGY, ICSU encouraged the United Nations to include the climate change issue in policy development processes and in the 1970s convened key meetings that led to the creation of the World Climate Research Programme in 1980 and, eventually, to the Intergovernmental Panel on Climate Change (IPCC) in 1988. In 1992, ICSU was invited to coordinate the inputs of the international scientific community to the United Nations Conference on Environment and Development (UNCED) in Rio de Janeiro and, again in 2002, to the World Summit on Sustainable Development (WSSD) in Johannesburg.

 

There is no one model of how to make science heard at the UN

All processes at the science-policy interface are different: Sometimes the Council has a formal role representing the scientific community at the UN. In other processes it is just one of many organizations creating pathways for communities of scientists to be heard. In yet other cases, ICSU plays a coordinating role, contributing to the architecture of international science advisory mechanisms and developing the scientific infrastructure underpinning UN policy processes. So each time we decide to engage in a new process, we have a close look at who is doing what in the space, and what the unique contribution of an international science council could be. Here are a couple of examples of what we thought were useful contributions:

In the process leading to the agreement of the Sustainable Development Goals (SDGs), the Council formally represented the international scientific community as part of the Major Group for Science and Technology (together with WFEO and ISSC), a stakeholder structure designed to provide civil society input into the intergovernmental negotiations. This typically involved coordinating written and oral inputs to the meetings of the UN working group involved in their creation to advocate for science-based decision- and policy-making.

The Council also published the only scientific review of the Sustainable Development Goals. Based on the work of more than 40 researchers from a range of fields across the natural and social sciences, it found that of the 169 targets beneath the 17 draft goals, just 29% are well defined and based on the latest scientific evidence, while 54% need more work and 17% are weak or non-essential. On its release, the report received widespread coverage in international media. Right now, the Council is working on finalizing a follow-up report that examines synergies and trade-offs between different goals, drawing attention to the need for mapping and characterising interactions between SDGs to avoid negative outcomes. Expect that report to be published in early 2017.

For the climate change process, the IPCC served as the obvious voice of science. However, as an intergovernmental body, its focus was not so much directed towards public outreach. This left a niche for another contribution by the Council to the UN negotiations. In the 18 months prior to the COP21 climate negotiations in Paris, December 2015, the Council operated the Road to Paris website, a stand-alone media product emerging from the scientific community. The site followed three major international policy processes that concluded in 2015: disaster risk reduction, sustainable development and climate change. Its content was designed to augment the existing media coverage of these processes from a scientific point of view. Just before COP21, a collection of the most read and most shared articles on the website was published in a magazine format. This involvement in the COP21 discussions culminated in the Council’s role at the conference itself, where it provided a focal point for scientists present to gather, network, discuss key scientific challenges and communicate to the media in the last days of the conference on the Paris Agreement.

At Habitat III, the UN’s conference on sustainable urbanization, we tried yet another approach. The stakeholder input for this process was organized in a much more bottom-up way, with no one organization being assigned formal representation of the science community. The input of the research community through what was called the “General Assembly of Partners” had a distinct impact on the outcome document. For example, in March of 2016, there was not a single mention of the word “health” in the draft of that document, yet by the time it was agreed in Quito, 25 mentions of “health” had appeared. Additionally, for Quito we teamed up with Future Earth and the University of Applied Sciences Potsdam to create a space called Habitat X Change. At the previous conferences, we had noticed that scientists were keen for an on-the-ground rallying point – for a physical space where scientists can meet, connect with one another and with stakeholders to exchange ideas, make the voice of science heard, and form new networks to work together in the future. Habitat X Change quickly became a natural focal point for scientists at the conference, providing a space for them to hold events, meet one another, showcase their research, or just have a coffee and talk. See our photos on Flickr to get an impression of how people at the conference filled it with life and meaning.

Overall, we found that there is a big interest in scientific input and opinion at these conferences. For example, at a spontaneously organized climate science press conference during the 2015 climate talks in Paris, more than 200 journalists crammed into the room, beleaguering the scientists with questions long after the conclusion of the press briefing. The voice of science is seen as more neutral and disinterested than those of the many activist groups jostling for attention around these processes.

 

The big frameworks are all in place – is science still needed now?

With the Paris Agreement in force, the world now has a legally binding agreement to limit dangerous climate change. The Sustainable Development Goals provide a roadmap to a more equitable, sustainable future. The New Urban Agenda tells us what the role of cities in all this will be. What then is the role for science in turning these political documents into realities on the ground?

One thing is to help deal with their complexity. Even before the SDGs were agreed, some started questioning them, saying that success in one goal might offset gains in others, if done the wrong way. Science can help make sense of these interactions and help policymakers avoid pitfalls. Making the New Urban Agenda a success requires efficient ways of linking knowledge production and policy-making, and closely linking the implementation of this Agenda with the SDGs. And the Paris Agreement prominently calls on the scientific community (represented by the IPCC) to identify pathways to limit global warming to 1.5° C.  There is a wealth of problems that need solutions from science in order to make these political agreements a success.

The scientific community also needs to help identify and fill critical knowledge gaps. Here, the Council’s research programmes are actively contributing to the implementation of the agreements. For example, the Integrated Research on Disaster Risk (IRDR) programme is helping to define minimum data standards for the indicators for the Sendai Agreement on disaster risk reduction. WCRP is bringing to the fore the remaining gaps in basic research on climate change. Future Earth is building scientific and stakeholder coalitions called Knowledge Action Networks around priority areas for these global agreements.

At the same time, the implementation phase of these frameworks poses challenges because it requires a cultural shift for science as it moves towards being a partner in co-creating the solutions needed by policymakers. It requires building long term frameworks to work at different scales, and importantly at the national level. This has implications for the kinds of organizations that are a central part of the Council’s core constituency: its broad base of national scientific academies. It also means engaging meaningfully with stakeholders to deliver the knowledge that is needed, and staying engaged during the implementation, not just the creation, of these frameworks.

Written by Heide Hackmann, Executive Director at the International Council for Science.

Geosciences Column: Africa’s vulnerability to climate change

Climate change is set to hit the nations of the Global South the hardest.

Ravaged by armed conflicts, a deep struggle with poverty, poor governance and horizontal inequality, some parts of Africa and other Global South regions are arguably the most vulnerable to the impacts of climate change. Largely reliant on natural resources for sustenance, current and future changes in temperatures, precipitation and the intensity of some natural hazards threaten the food security, public health and agricultural output of low-income nations.

Climate change increases heat waves across Africa

Among other impacts, climate change boosts the likelihood of periods of prolonged and/or abnormally hot weather (heat waves). A new study, by researchers in Italy, reveals that in the future all African capital cities are expected to face more exceptionally hot days than the rest of the world.

The new research, published in the EGU open access journal Natural Hazards and Earth System Sciences, has found that extreme heat waves affected only about 37% of the African continent between 1981 to 2005 while in the last decade, the land area affected grew to about 60%. The frequency of heat waves also increased, from an average of 12.3 per year from 1981 to 2005 to 24.5 per year from 2006 to 2015.

By merging information about the duration and the intensity of the recorded heat waves, the authors of the study were able to quantify the heat waves using a single numerical index which they called the Heat Wave Magnitude daily (HWMId). The new measure allowed the team to compare heatwaves from different locations and times.

Geographically plotting the HWMId values for daily maximum temperatures over five-year periods from 1981 to 2015, clearly showed there has been an increase, not only in the number of heat waves and their distribution across the continent, but also an escalation in their intensity (see the figure below). The trend is particularly noticeable since 1996 and peaks between 2011 and 2015.

Heat Wave Magnitude Index daily of maximum temperature (HWMIdtx) for 5-year periods of Global Surface Summary of the Day (GSOD) gauge network records from 1981 to 2015. The bottom-right panes show the spatial distribution of the GSOD station employed in this study. From G. Ceccherini et al. 2016 (click to enlarge).

The figure also highlights that densely populated areas, particularly Northern and Southern Africa, as well as Madagascar, are most at risk.

The rise in occurrences of extreme temperature events will put pressure on already stretched local infrastructure. With the elderly and children most at risk from heat waves, the health care needs of the local population will increase, as will the demand for electricity for cooling. Therefore, further studies of this nature are required, to quantify the implications of African heat waves on health, crops and local economies and assist government officials in making informed decisions about climate change adaptation policies.

Lessons learned from climate adaptation strategies

In the face of weather extremes across Africa including heat waves, droughts and floods, it is just as important to carefully assess the suitability of climate change adaptation policies, argues another recently published study in the EGU open access journal Earth System Dynamics.

Take Malawi, for instance, a severely poor nation: over 74% of the population live on less than a dollar ($) a day and 90% depend on rain-fed subsistence farming to survive. According to Malawi government figures, one-third of the country’s gross domestic product (GDP) comes from agriculture, forestry and fishing.  As a result, the country – and its population – is vulnerable to weather extremes, such as variability in the rainy season, prolonged dry spells and rise in the number of abnormally hot days.

A 2006 Action Aid report states that “increased droughts and floods may be exacerbating poverty levels, leaving many rural farmers trapped in a cycle of poverty and vulnerability. The situation in Malawi illustrates the drastic increases in hunger and food insecurity being caused by global warming worldwide.”

The Lake Chilwa Basin Climate Adaptation Programme (LCBCCAP) aims to enhance the resilience of rural communities surrounding Lake Chilwa to the impacts of droughts, floods and temperature extremes. The lake is a closed drainage lake (meaning it relies on rainfall to be replenished) in the south eastern corner of Malawi.

Perceptions of how climate change affects residents of the Lake Chilwa Basin. From H. Jørstad and C. Webersik, 2016 (click to enlarge).

The authors of the Earth System Dynamics study interviewed a group of 18 women (part of the LCBCCAP programme), back in early 2012, to understand how they perceived they were affected by climate change and whether the adaptation tools provided by the programme would meet their long-term needs.

The women agreed unanimously: climate in the Lake Chilwa Basin was changing. They reported that rainy seasons had become shorter and more unreliable, leading to droughts and dry spells. One of the women mentioned raising temperatures and fewer trees, due to overexploitation.

All those interviewed were part of the women fish-processing group, an initiative which sought to provide an alternative income for the women as traditional agricultural activities became unreliable due to erratic rainfall and prolonged dry seasons.

While the women’s new occupation did provide economic relief, the study authors highlight that the group’s new source of income was just as dependant on natural resources as agriculture.

Throughout the interviews, the women of the fish-processing group expressed concerns that the they thought Lake Chilwa might dry up completely by 2013.

“Yes, the lake will dry up and I will not have a business,” says Tadala, one of the women interviewed in the study. While another local woman said “Yes, lower water levels in the lake is threatening my business.”

Lake Chilwa has a long history of drying up: in the last century it has dried up nine times.  If the lake dried up completely, the women of the fish-processing group would be out of business for 2 to 4 years. Even small drops in the water level affect the abundance of fish stocks.

Lake Chilwa has a history of drying up. These Landsat images show the net reduction of lake area between October 1990 and November 2013. show changes to the extensive wetlands (bright green) that surround Lake Chilwa. These wetlands are internationally recognized as an important seasonal hosting location for migratory birds from the Northern Hemisphere. Credit: USGS

The interviews were carried out in early 2012. The previous two years had seen very limited rainfall. Not enough to sustain the lake, but the situation, at the time of the interviews wasn’t critical. However, throughout the summer of 2012 the lake water levels started falling rapidly prompting the relocation of large groups of lakeshore residents. Those dependant on fishing to support their families were most affected.

The women fish-processing group is a good demonstration of how local communities can adopt low-cost measures to adjust to climate change. At the same time, it highlights the need to assess climate adaptation strategies to take into consideration whether they too are dependent on climate-sensitive natural resources. The new research argues that diversifying people’s livelihoods might provide better long-term coping mechanisms.

By Laura Roberts Artal, EGU Communications Officer

References and resources

Ceccherini, G., Russo, S., Ameztoy, I., Marchese, A. F., and Carmona-Moreno, C.: Heat waves in Africa 1981–2015, observations and reanalysis, Nat. Hazards Earth Syst. Sci., 17, 115-125, doi:10.5194/nhess-17-115-2017, 2017

Jørstad, H. and Webersik, C.: Vulnerability to climate change and adaptation strategies of local communities in Malawi: experiences of women fish-processing groups in the Lake Chilwa Basin, Earth Syst. Dynam., 7, 977-989, doi:10.5194/esd-7-977-2016, 2016.

ActionAid: Climate change and smallholder farmers in Malawi: Understanding poor people’s experience in climate change adaptation, ActionAid International, 2006.

NASA: The consequences of climate change

United States Environmental Protection Agency (EPA): Understanding the Link Between Climate Change and Extreme Weather

National Oceanographic and Atmospheric Administration (NOAA): Heat wave, a major summer killer

January GeoRoundup: the best of the Earth sciences from across the web

January Georoundup: the best of the Earth sciences from across the web

The start of the new year sees the launch of a new series here on GeoLog. Drawing inspiration from popular stories on our social media channels, as well as unique and quirky research news, this monthly column aims to bring you the best of the Earth and planetary sciences from around the web.

Major stories

One of the biggest stories of this month was the anticipated release of the average global surface temperatures for 2016. It probably wasn’t a great surprise to discover that newly released National Oceanic and Atmospheric Administration (NOAA), NASA and the UK’s MetOffice data showed 2016 was the hottest year on record. On average, temperatures last year were 0.99℃ higher than the mid-century mean. It marks the third year in a row that Earth has registered record-breaking temperatures and highlights a trend, as climate blogger, Dana Nuccitelli, explains in an article for The Guardian:

“We’re now breaking global temperature records once every three years”

This video, showing NASA global surface temperature record since 1880, illustrates the point clearly. There were no record breaking years between 1945 and 1976, but since 1980 there have been 12.

 

This month also saw the inauguration of the 45th President of the United States. A fierce climate-change denier, Donald Trump’s rise to power has many worried about the future of climate change policy at the White House. To shine a light on the realities of climate change in the face of a largely climate sceptic administration and despite the ever rising global temperatures, The Guardian dedicate 24 hours to reporting on how climate changes is affecting regions across the globe. Among the comprehensive coverage this collection of climate facts stands out.

And it turns out the fears about the newly elected administration may not have been unfounded. Earlier this week the US Department of Agriculture and other federal agencies issued a ban preventing its scientists from communicating with the press and public about their research findings; even on social media. The order has since been rescinded, but US- based scientists remain concerned. In response, the AGU has written a letter to federal agencies in the US defending the protection of scientific integrity and open communications.

Closer to home, central Italy was struck by a sequence of four earthquakes on 18th of January, with the largest registering a magnitude of 5.7. The epicentres were located close to the town of Amatrice – in a region already shaken by several strong, and sometimes devastating, earthquakes in 2016. Later that day, and following a period of very heavy snowfall, a deadly avalanche in the Apennines buried a hotel in the Grand Sasso resort area, which had also been affected by the earthquakes. Although some news reports were quick to suggest the avalanche had been triggered by the earthquakes, researchers will need more data and a more detailed analysis to make this connection.

What you might have missed

While we are on the topic of climate change, a newly published report by the  European Environmental Agency is not to be missed.

“Climate change poses increasingly severe risks for ecosystems, human health and the economy in Europe.”

The document assesses the latest trends and projections on climate change and its impacts across Europe. While the effects of increasing temperatures will be felt across the continent, Southern and south-eastern Europe is projected to be a climate change hotspot with the forecasts showing the region will bear the brunt of the impacts.

A powerful 7.9 magnitude earthquake struck off the coast of Papua New Guinea on 22nd January. While the USGS estimated there was a low risk to property, tsunami warnings were issued across the South Pacific. In the wake of the tremor, the Incorporated Research Institutions for Seismology (IRIS) tweeted this neat ground motion visualisation of the earthquake waves.

A study published in Nature and summarised in Eos, highlights that while overt discrimination of women in the geosciences has not been as prevalent in recent years, many female scientists are still subject to subtle and unconscious bias leading to barriers to success in the geosciences.

Five links we liked

  • NOAA’s new GOES-R satellite for weather monitoring returned its first stunning photos of planet Earth – here are six reasons why the data it will acquire matter.
  • Snow fell in the Sahara for the first time in 37 years! This photogallery shows the usually red sand dunes of the desert covered in a sprinkling of white snow.
  • Scientist at The University of Cambridge have published the first global map of flow within the Earth’s mantle, showing that the surface moves up & down “like a yo-yo”.

The EGU story

At the EGU, the highlight of the month is the number of abstracts we received from researchers wishing to present and discuss their science at the EGU 2017 General Assembly. With over 17,500 abstracts, and an improved set-up to accommodate the high number of expected participants, the conference promises to be the largest and most exciting to date. We look forward to welcoming everyone in Vienna on 23–28 April!

And don’t forget! To stay abreast of all the EGU’s events and activities, from highlighting papers published in our open access journals to providing news relating to EGU’s scientific divisions and meetings, including the General Assembly, subscribe to receive our monthly newsletter.

GeoPolicy: Have your say on Horizon 2020

GeoPolicy: Have your say on Horizon 2020

The European Union provides almost 75 billion euros of funding through the Horizon 2020 scheme. This money can fund research projects, studentships, post-doctorates and scientific outreach (to name but a few!). The EU is now calling for feedback and comments about the scheme. This month’s GeoPolicy explains how you can have your say.

 

Are you a PhD student funded by European Research Council (ERC) or have you received grants from the ERC? If so, this money will have come from the Horizon 2020 (H2020) scheme, funded by the European Union (EU).

Essentially, H2020 provides financial support to scientists and businesses wishing to establish projects that overlap with the EU’s policy objectives (promoting excellent science that benefits society). H2020 was introduced in more detail in a previous GeoPolicy post entitled ‘An overview of EU funding for the Earth, atmosphere, and space sciences’. The scheme runs from 2014 to 2020. Now, at this halfway stage, the EU requesting feedback through an online survey.

The objective of the consultation is to collect information from a wide audience on different aspects of the implementation of the Joint Undertakings operating under Horizon 2020.

The survey is open to all and feedback will be used to improve the second half of H2020 and to support discussions currently being conducted on the next EU funding project: FP9 (Framing Programme 9, 2021-2030).

Contributions are particularly sought from researchers, industry, entrepreneurs, innovators and all types of organisations that have participated in Horizon 2020 and in calls for proposals published by the Joint Undertakings in particular.

So, if you have been part of the H2020 process then consider completing the survey. Deadline for complete is the 10th March 2017.

LINK TO SURVEY

 

NB: Applying for ERC research grants is done through the EU Participant Portal. More details about the process can be found here.

Follow

Get every new post on this blog delivered to your Inbox.

Join other followers: