GeoLog

Geomorphology

Imaggeo on Mondays: a storm is coming

Imaggeo on Mondays: a storm is coming

Coastlines globally are immensely diverse: from the beautifully topical and sun kissed beaches of the Caribbean, to the wet and misty British coastline, through to the raw and wild Alaskan shores, they are home to scores of flora and fauna; rich habitats shaped by powerful forces of nature.

In stark contrast, some coastlines, (28,000 km worldwide to be precise) are dry almost barren places, where little grows. These long stretches of inhospitable seaside lands are known as hyperarid and arid coastlines. Due to the lack of protective vegetation the land is exposed to the action of winds and the sun, leaving behind pavements of bare rock, large dune formations and/or highly saline enclosed lakes (sebkhas).

The Gulf of Aqaba, in the north-western tip of Saudi Arabia, where the desert meets the Red Sea is one such place. Rivers here, which drain into the sea water, are fleeting. They appear after heavy rainfall, when flash floods deliver huge influxes of sediment to the coral-rich waters of the Red Sea.

Nadine Hoffman took today’s featured image while driving from Israel from the Red Sea. Pictured is the northern tip of Saudi Arabia, where a spring storm is coming into the desert bringing severe rain and flash floods. Eventually, the flood waters will drain into the Gulf of Aqaba.

 

If you pre-register for the 2017 General Assembly (Vienna, 22 – 28 April), you can take part in our annual photo competition! From 1 February up until 1 March, every participant pre-registered for the General Assembly can submit up three original photos and one moving image related to the Earth, planetary, and space sciences in competition for free registration to next year’s General Assembly! These can include fantastic field photos, a stunning shot of your favourite thin section, what you’ve captured out on holiday or under the electron microscope – if it’s geoscientific, it fits the bill. Find out more about how to take part at http://imaggeo.egu.eu/photo-contest/information/.

Imaggeo on Mondays: America’s dead sea

Imaggeo on Mondays: America’s dead sea

On the blog today, Jennifer Ziesch, a researcher at the Leibniz Institute for Applied Geophysics, takes us on a tour of the Great Salt Lake, located in the north of Salt Lake City (Utah). Did you know it is one of the largest salt water lakes in the world?

The large salt lake and Salt Lake City, named after the lake, lie on a flat plain about 1300 m above sea level. The salt lake is bordered to the east by the beautiful high Uinta Mountains (3700 – 4100 m) – part of the Rocky Mountains – and to the west by a huge salt desert, which developed towards the end of the last Ice Age due to dehydration. A semi-arid climate characterizes the landscape of the lake and surrounding area.

Like the Dead Sea, the Great Salt Lake is shrinking rapidly. In the middle of the 19th Century, the lake was almost twice as large as it is today. Mankind diverts the inflow of freshwater from the rivers for agriculture and industry. Local people have reported problems with saline groundwater.

The Great Salt Lake is becoming more salty (up to 27%). How high the salinity is shown in the close-up of a footprint. Salt crystals are formed in their full beauty.

Salt precipitation after a walk near the Great Salt Lake. Credit: Jennifer Ziesch (distributed via imaggeo.egu.eu)

The economy uses the salt and other minerals for fertilisers and wintering products. Unfortunately, the ecosystem is becoming more and more fragile: bird species, crabs and other creatures are losing their habitat.

By Jennifer Ziesch, geoscientist at the Leibniz Institute for Applied Geophysics.

Editor’s note: This text was modified on 14/02/2017 with the addition of an extra photograph to show salt precipitation in the lake. 

If you pre-register for the 2017 General Assembly (Vienna, 22 – 28 April), you can take part in our annual photo competition! From 1 February up until 1 March, every participant pre-registered for the General Assembly can submit up three original photos and one moving image related to the Earth, planetary, and space sciences in competition for free registration to next year’s General Assembly!  These can include fantastic field photos, a stunning shot of your favourite thin section, what you’ve captured out on holiday or under the electron microscope – if it’s geoscientific, it fits the bill. Find out more about how to take part at http://imaggeo.egu.eu/photo-contest/information/.

Imaggeo on Mondays: Deep in the Himalayas

Deep in the Himalayas . Credit: Yuval Sadeh (distributed via imaggeo.egu.eu).

The Himalayas: vast, formidable and home to the Earth’s highest peaks. The mountain range stretches inexorably through Indian, Bhutan, Nepal, China (Tibet) and Pakistan separating the Tibetan Plateau to the north from India’s alluvial plains to the south.

India, as we know it today, started life much further south, as an island not far off the coast of Australia. It was separated from Asia (on the Eurasian plate) by the Tethys Ocean, a vast body of water which  wrapped, almost entirely, around the supercontinent Pangea. As the supercontinent started to break up, some 200 million years ago, India began its slow (in human terms, but quite fast geologically speaking) journey north towards Asia.

Moving at speeds between 9 to 16 cm per year (for comparison, human hair grows roughly 15 cm per year), by 80 million years ago, India was located 6,400 km south of Asia. The Tethys was being slowly subducted under the Asian plate and would eventually close (disappear) all together some 30 million years later, when the Indian plate collided against Asia and the Himalayas began to uplift.

The closing and subduction of the Tethyan Ocean, followed by the collision of the two continents produced the Himalayas. The mountain range is divided into six parallel belts, each of which has distinct lithotectonic zones. They are highly complex and represent a long history of tectonic processes and deformation events.

The high peaks of Nepal and China attract a fair share of the limelight, offering thrill seeking adventurers the possibility to get close to (if not scale) the highest mountains on Earth. But lesser known areas of the Himalayas also offer a window into the geological past of the planet and breathtaking scenes for intrepid people too.

Today’s photograph features a valley deep in the Indian Himalayas, and illustrates some geological, geomorphological and other phenomena’s together with a small village that was built inside this glacier curved valley.

 

If you pre-register for the 2017 General Assembly (Vienna, 22 – 28 April), you can take part in our annual photo competition! From 1 February up until 1 March, every participant pre-registered for the General Assembly can submit up three original photos and one moving image related to the Earth, planetary, and space sciences in competition for free registration to next year’s General Assembly!  These can include fantastic field photos, a stunning shot of your favourite thin section, what you’ve captured out on holiday or under the electron microscope – if it’s geoscientific, it fits the bill. Find out more about how to take part at http://imaggeo.egu.eu/photo-contest/information/.

Imaggeo on Mondays: the remotest place on Earth?

Imaggeo on Mondays: the remotest place on Earth?

Perhaps a bold claim, but at over 4,000 km away from Australia and 4,200 km from South Africa, Heard Island is unquestionably hard to reach.

The faraway and little know place is part of a group of volcanic islands known as HIMI (comprised of the Heard Island and McDonald Islands), located in the southwest Indian Ocean. Shrouded in persistent bad weather and surrounded by the vast ocean, Heard Island, the largest of the group, was first sighted by the merchant vessel Oriental in 1853.

Its late discovery and inaccessibility mean Heard Island is largely undisturbed by human activity (some research, surveillance, fishing and shipping take place on the island and it’s surrounding waters). It boasts a rich fauna and flora: seals, invertebrates, birds and seals call it home, as do hardy species of vegetation which grow low to the ground to avoid the fierce winds which batter the island.

Geologically speaking the islands are pretty unique too. They are the surface exposure of the second largest submarine plateau in the world, the Kerguelen Plateau. Limestones deposited some 45–50 million years ago began the process which saw the emergence of the islands from the ocean floor. Ancient volcanic activity followed, accumulating volcanic materials,  such as pillow lavas and volcanic sediments, up to 350m thick. For the last million years (or less) Heard Island has been dominated by volcanism, giving rise to the 2745m tall Big Ben and 700m tall Mt. Dixon. Eruptions and volcanic events have been observed on the island since 1947. Much of the recent volcanism in the region has centered around McDonald island, which has grown 40 km in area and 100 m in height since the 1980s.   

As the group of islands provides a remarkable setting, where geological processes and evolution (given that large populations of marine birds and mammals numbering in the millions, but low species diversity) can be observed in in real time, UNESCO declared HIMI a World Heritage Site back in 1997.

If you pre-register for the 2017 General Assembly (Vienna, 22 – 28 April), you can take part in our annual photo competition! From 1 February up until 1 March, every participant pre-registered for the General Assembly can submit up three original photos and one moving image related to the Earth, planetary, and space sciences in competition for free registration to next year’s General Assembly!  These can include fantastic field photos, a stunning shot of your favourite thin section, what you’ve captured out on holiday or under the electron microscope – if it’s geoscientific, it fits the bill. Find out more about how to take part at http://imaggeo.egu.eu/photo-contest/information/.

Follow

Get every new post on this blog delivered to your Inbox.

Join other followers: