GeoLog

Geodynamics

GeoTalk: A smart way to map earthquake impact

GeoTalk: A smart way to map earthquake impact

Last week at the 2016 General Assembly Sara, one of the EGU’s press assistants, had the opportunity to speak to Koen Van Noten about his research into how crowdsourcing can be used to find out more about where earthquakes have the biggest impact at the surface.

Firstly, can you tell me a little about yourself?

I did a PhD in structural geology at KULeuven and, after I finished, I started to work at the Royal Observatory of Belgium. What I do now is try to understand when people feel an earthquake, why they can feel it, how far away from the source they can feel it, if local geology affects the way people feel it and what the dynamics behind it all are.

How do you gather this information?

People can go online and fill in a ‘Did You Feel It?’ questionnaire about their experience. In the US it’s well organised because the USGS manages this system in whole of the US. In Europe we have so many institutions, so many countries, so many languages that almost every nation has its own questionnaire and sometimes there are many inquiries in only one country. This is good locally because information about a local earthquake is provided in the language of that country, but if you have a larger one that crosses all the borders of different countries then you have a problem. Earthquakes don’t stop at political borders; you have to somehow merge all the enquiries. That’s what I’m trying to do now.

European institutes that provide an online "Did You Feel the Earthquake?" inquiry. (Credit: Koen Van Noten)

European institutes that provide an online “Did You Feel the Earthquake?” inquiry. (Credit: Koen Van Noten)

There are lots of these databases around the world, how do you combine them to create something meaningful?

You first have to ask the different institutions if you can use their datasets, that’s crucial – am I allowed to work on it? And then find a method to merge all this information so that you can do science with it.

You have institutions that capture global data and also local networks. They have slightly different questions but the science behind them is very similar. The questions are quite specific, for instance “were you in a moving vehicle?” If you answer yes then of course the intensity of the earthquake has to be larger than one felt by somebody who was just standing outside doing nothing and barely felt the earthquake. You can work out that the first guy was really close to the epicentre and the other guy was probably very far, or that the earthquake wasn’t very big.

Usually intensities are shown in community maps. To merge all answers of all institutes, I avoid the inhomogeneous community maps. Instead I use 100 km2 grid cell maps and assign an intensity to every grid cell.. This makes the felt effect easy to read and allows you to plot data without giving away personal details of any people that responded. Institutes do not always provide a detailed location, but in a grid cell the precise location doesn’t matter. It’s a solution to the problem of merging databases within Europe and also globally.

Underlying geology can have a huge impact on how an earthquake is felt.  Credit: Koen Van Noten.

Underlying geology can have a huge impact on how an earthquake is felt. 2011 Goch ML 4.3 earthquake.  Credit: Koen Van Noten.

What information can you gain from using these devices?

If you make this graph for a few earthquakes, you can map the decay in shaking intensity in a certain region. I’m trying to understand how the local geology affects these kinds of maps. Somebody living on thick pile of sands, several kilometres above the hypocentre, won’t feel it because the sands will attenuate the earthquake. They are safe from it. However, if they’re directly on the bedrock, but further from the epicentre, they may still feel it because the seismic waves propagate fast through bedrock and aren’t attenuated.

What’s more, you can compare recent earthquakes with ones that happened 200 years ago at the same place. Historical seismologists map earthquake effects that happened years ago from a time when no instrumentation existed, purely based on old personal reports and journal papers. Of course the amount of data points isn’t as dense as now, but even that works.

Can questionnaires be used as a substitute for more advanced methods in areas that are poorly monitored?

Every person is a seismometer. In poorly instrumented regions it’s the perfect way to map an earthquake. The only thing it depends on is population density. For Europe it’s fine, you have a lot of cities, but you can have problems in places that aren’t so densely populated.

Can you use your method to disseminate information as well as gather it, say for education?

The more answers you get, the better the map will be. Intensity maps are easier to understand by communities and the media because they show the distribution of how people felt it, rather than a seismogram, which can be difficult to interpret.

What advice would you give to another researcher wanting to use crowd-sourced information in their research?

First get the word out. Because it’s crowd-sourced, they need to be warned that it does exist. Test your system before you go online, make sure you know what’s out there first and collaborate. Collaborating across borders is the most important thing to do.

Interview by Sara Mynott, EGU Press Assistant and PhD student at Plymouth University.

Koen presented his work at the EGU General Assembly in Vienna. Find out more about it here.

When mountains collapse…

When mountains collapse…

Jane Qiu, a grantee of the Pulitzer Center on Crisis Reporting, took to quake-stricken Nepal last month — venturing into landslide-riddled terrains and shadowing scientists studying what makes slopes more susceptible to failure after an earthquake. The journey proved to be more perilous than she had expected.

What would it be like to lose all your family overnight? And how would you cope? It’s with these questions in mind that I trekked with a heavy heart along the Langtang Valley, a popular touristic destination in northern Nepal.

Exactly a year ago this week, this remote Himalayan watershed witnessed the single most horrific canastrophy of the Gorkha Earthquake: a massive avalanche engulfed Langtang and nearby villages, leaving nearly 400 people killed or missing.

The quake shook up ice and snow at five locations along a 3-kilometre ridge between 6,800-7,200 metres above sea level. They went into motion and swept huge amounts of loose debris and fractured rocks along their way — before crashing several kilometres down to the valley floor.

The avalanche generated 15 million tonnes of ice and rock, and sent powerful wind blasting down the valley, flattening houses and forests. Wind speeds exceeded 322 kilometres per hour and the impact released half as much energy as the Hiroshima nuclear bomb. Nothing in its path could have survived.

A pile of commemorating stones on the debris that buried Langtang and nearby villages last April, killing and leaving missing nearly 400 people. (Credit: Jane Qiu)

A pile of commemorating stones on the debris that buried Langtang and nearby villages last April, killing and leaving missing nearly 400 people. (Credit: Jane Qiu)

Where the villages used to stand is now a gigantic pile of debris, up to 60 metres deep. It’s effectively a mass grave where people pile up stones and put up prayer flags to mark where their loved ones used to live.

It’s hard to come to terms with the scale of the devastation. Everybody in the valley has lost somebody to the monstrous landslide. About two dozen children from 16 families, who were in schools in Kathmandu during the earthquake, lost all their family in the matter of a few minutes.

It’s a sombre reminder of how dangerous it can be in the Himalayas — where people live so close to ice and where population growth and the search for livelihood often push them to build in hazardous areas.

The only building in the village of Langtang that survived the avalanche. The rocky enclave protected it from the crushing debris and the powerful blast. (Credit: Jane Qiu)

The only building in the village of Langtang that survived the avalanche. The rocky enclave protected it from the crushing debris and the powerful blast. (Credit: Jane Qiu)

Under-appreciated danger

The Langtang tragedy also reminds us how deadly landslides can be during an earthquake — a danger that is often under-appreciated. While earthquakes and landslides are like conjoined twins that go hand in hand, most of the resources go into building houses that can sustain strong shaking, and far too little into mitigating landslide risks.

In both the 2005 magnitude-7.6 Kashmir Earthquake in Pakistan and the 2008 magnitude-7.8 Wenchuan Earthquake in China — which killed approximately 26,000 and 90,000 people, respectively — a third of the fatalities were caused by landslides. While it’s certainly important to build earthquake-proof houses, it’s equally important to build them at safe locations.

In addition to the killer avalanche in Langtang, the Gorkha Earthquake unleashed over 10,000 landslides across Nepal, which blocked rivers and damaged houses, roads, and hydropower stations. Many valleys are totally shattered — with landslide scars running down from the ridge top like gigantic waterfalls, and numerous small failures marring the landscape like fireworks shooting across the sky.

Driving along the Aniko Highway that connects Nepal with Tibet, it’s not difficult to see that many houses had survived the shaking only to be crushed by debris flows and rock falls. The border remains closed because of continuing landslide hazards. The highway, which used to have some of the worst traffic jams in Nepal, is totally deserted.

A building in Kodari — which used to be a bustling trade town at the Nepal-Tibet border — was unscathed during the earthquake only to be damaged by large rock falls. (Credit: Jane Qiu)

A building in Kodari — which used to be a bustling trade town at the Nepal-Tibet border — was unscathed during the earthquake only to be damaged by large rock falls. (Credit: Jane Qiu)

Enduring legacy

A major concern is that Nepal will suffer from more severe landslides than usual for a long time. During the last monsoon, the landslide rate was about ten times greater than an average year. And my trek along the Langtang Valley was accompanied by frequent sound tracks of falling rocks and shifting slopes. A number of times, I had to run from boulders crushing down onto the trail — a clear sign that there are lots of instability in the system.

The instability could go on for years or even decades and will be exacerbated by rainfall and aftershocks. This enduring legacy is often not fully taken on board in quake recovery — with devastating consequences. Eight years after the Wenchuan Earthquake, for instance, settlements built after the disaster continue to be inflicted by a heightened level of landslides, which cause floods and destroy infrastructures.

This points to the importance of rigorous risk assessment before reconstruction and close monitoring afterwards. There is also an urgent need to better understand what makes mountainsides more susceptible to landslides after an earthquake and how they recover over time.

To achieve that end, several research groups went into landslide-ridden areas in Gorkha’s immediate aftermath. They wanted to capture what happened to the landscape immediately after the quake, so they could track the changes in the coming years.

Early warning

Last month, I joined one such team — consisting of Christoff Andermann, Kristen Cook and Camilla Brunello, of the German Research Centre for Geosciences (GFZ) in Potsdam, Germany, and their Nepalese coordinator Bhairab Sitaula — on a field trip along the Arniko Highway.

That was their fourth trip in Nepal since last June when they began to map the landslides and installed a dozen broadband seismometers, along with weather stations and river-flow sensors, over 50 square kilometres of badly shaken terrains.

The team often attracted a few curious onlookers when they worked away, but nothing provoked more excitement than the drone, says Cook. The crowd, especially kids, were thrilled to see the little robotic device buzzing around like a gigantic mosquito, she adds. A camera and sensors onboard can help them to locate the landslides and monitor debris movement, especially after rainstorms.

 

Christoff Andermann, Camilla Brunello and Bhairab Sitaula performing maintenance on a broadband seismometer and weather station near the village of Chaku on the Arniko Highway (Credit: Jane Qiu)

Christoff Andermann, Camilla Brunello and Bhairab Sitaula performing maintenance on a broadband seismometer and weather station near the village of Chaku on the Arniko Highway (Credit: Jane Qiu)

Another exciting aspect of their research is the use of seismology to probe geomorphic processes over a large area. Landslides are effectively earthquakes that occur near the surface, and produce signals that can be picked up by seismometers.

The team, led by Niels Hovius of GFZ, can detect precursory seismic signals days before a landslide happens. They also study ground properties by measuring how traffic vibrations travel through the ground.

Because seismic waves travel faster when subsurface materials are wet, the researchers are able to trace how rainfall penetrates into and through the ground. This determines the pressure of water in spaces between soil and rock particles, a key factor controlling slope stability.

Such studies will one day allow researchers to determine the rainfall thresholds that could precipitate a landslide and capture deformation precursors days in advance. This offers a real prospect of an effective early warning system, which is urgently needed in a country that is increasingly plagued by landslides.

By Jane Qiu, freelance science writer in Beijing

Further reading

Qiu, J. Listening for landslides, Nature 532, 428-431 (2016).

Jane Qiu, an awardee of the 2012 EGU Science Journalism Fellowship, is a Chinese freelance science writer in Beijing. She is passionate about the origin and evolution of the Tibetan Plateau and surrounding mountain ranges—a vast elevated land also known as the Third Pole because it boasts the largest stock of ice outside the Arctic and the Antarctic. 

Travelling extensively across the Third Pole, up to 6,700 meters above sea level (http://science.sciencemag.org/content/351/6272/436), Qiu has covered wide-ranging topics—from the meltdown of Himalayan glaciers, grassland degradation, the origin of woolly rhino, to the people of Tibet. Her work regularly appears in publications such as Nature, Science, The Economist, Scientific American, and SciDev.Net.

Qiu’s journey to the Third Pole began with Marine Biological Laboratory’s Logan Science Journalism Fellowship that allowed her to travel to the Arctic and the Antarctic and report climate change first hand. These experiences sowed the seeds for her later fascination with geoscience and environmental studies, and afforded her the insight to draw parallels between these geographically diverse regions.

Counting the cost of natural disasters

Counting the cost of natural disasters

Often, in the news, we are used to seeing disaster statistics reported as isolated figures, placed into context by the tragic human cost of floods, earthquakes and drought. The recent Ecuadorian earthquake that occurred on Saturday the 16th April, for example, was described as having an estimated economic cost of $820 million, which could rise as the scale of the disaster is revealed. But beyond the shocking levels of destruction that these numbers can represent, can they teach us anything of humanity’s resilience to natural disasters?

Well, according to Dr James Daniell, a civil/structural engineer and geophysicist from the Karlsruhe Institute of Technology (KIT) in Germany, by combining the data for disasters reported between 1900 and 2015, interesting trends in vulnerability across the globe are revealed. Dr Daniell, who presented his results to the European Geoscience Union this week, along with colleagues from KIT and the General Sir John Monash Foundation, Australia, has discovered that up to $7 trillion worth of economic losses have occurred globally since 1900. This value was revealed by comparing economic costs for various natural disasters including floods, earthquakes, volcanoes, storms and drought using a collection of socio-economic indicators called the CATDAT Damaging Natural Disaster database.

Of this $7 trillion, the majority of financial costs have been from flooding disasters, which accounted for just over a third of losses. Since the 1960’s, however, this trend has started to shift, with storms and storm surges accounting for 30% of the losses. Storm and flooding damages have presented an interesting challenge for Dr Daniell and his team, as it can be difficult to separate the financial costs of these similar and often connected disasters. Luckily, the database has amassed over 30,000 sources in over 90 languages to attempt to clarify the various sources of economic loss.

Deaths due to natural disasters since 1900 (Credit: James Daniell, KIT)

Deaths due to natural disasters since 1900 (Credit: James Daniell, KIT)

As well as looking at trends over the last 115 years, by examining the relationships between disasters, socio-economic losses and vulnerability, Dr Daniell has come to a surprising realisation. Although the total number of deaths in disasters appears to be increasing, in comparison with the total global population the percentage of deaths is actually in decline, and so too is the associated economic cost for society.

“Here there is a clear trend, that many (but not all) countries are protecting themselves better against disasters by building better, and therefore and are reducing their risk of high losses.”

Dr Daniell also says that his data highlights the noticeably positive impact that flood prevention infrastructure, education and communication is having on resilience to flooding.

“Over the entire time period, half of people died due to flood. However, with better planning, warnings and preventive measures, the death rate due to floods is significantly decreasing.”

An additional benefit of this database is the rapid assessment of the potential economic consequences for future natural disasters it can provide, making it easier for communities and governments to plan for large scale natural disasters. It is clear the benefits of this study and the CATDAT database will continue to assist us into the future, in our attempts to manage the risks of our planet’s most destructive forces.

By Hazel Gibson, EGU General Assembly Press Assistant and Plymouth University PhD student.

Hazel is a science communicator and PhD student researching the public understanding of the geological subsurface at Plymouth University using a blend of cognitive psychology and geology, and is one of our Press Assistants this week.

Imaggeo on Mondays: recreating geological processes in the lab

Imaggeo on Mondays: recreating geological processes in the lab

Many of the processes which take place on Earth happen over very long time scales, certainly when compared to the life span of a person. The same is true for geographical scale. Many of the processes which dominate how our planet behaves are difficult to visualise given the vast distances (and depths) over which they occur.

To overcome this difficulty, scientists have developed and resorted to a number of tools; from geological mapping right through to generating computer models. One such tool dates back some two centuries: analogue experiments. Initially they started off as roughly scaled experiments to test a range of hypothesis. Famously, James Hutton used analogue models to prove that the folding of originally horizontal strata is the result of lateral compression. With time they have become increasingly sophisticated, allowing researchers to replicate a vast range of conditions and environments which lead to a better understanding of how our planet works.

Today’s Imaggeo on Monday’s image, by Stephane Dominguez, a researcher Chargé de Recherche CNRS, in Montpellier, shows the final evolution stage of an analog experiment dedicated to the study of Relief Dynamics – how surface topography comes to be – and what role tectonics, erosion and sedimentation play in the formation of landscapes. In such experiments, typical scaling is 1cm = a few hundred meters and 1s = a few tens of years.

In this particular experiment “we used a specific granular material mixture (made of water saturated silica, microbeads, PVC and graphite powders, to simulate a portion of the upper terrestrial crust submitted to tectonic extension (where the crust is being stretched, such as at, but not limited to, continental rifts and divergent plate boundries),”explains Stephane.

At the same time, the research team used a rainfall system to project micro water droplets on the model surface. This causes water runoff to initiate and starts the growing reliefs to be eroded.

“We obtain a very realistic morphology that continuously evolves in response to complex interactions between surface deformation (induced by normal fault activity – caused by the stretching of the crust) and surface processes (erosion, sediment transport and deposition).”

 

References

Ranalli, G.: Experimental tectonics: from Sir James Hall to the present, Journal of Geodynamics, 32, 65-76.

Imaggeo is the EGU’s online open access geosciences image repository. All geoscientists (and others) can submit their photographs and videos to this repository and, since it is open access, these images can be used for free by scientists for their presentations or publications, by educators and the general public, and some images can even be used freely for commercial purposes. Photographers also retain full rights of use, as Imaggeo images are licensed and distributed by the EGU under a Creative Commons licence. Submit your photos at http://imaggeo.egu.eu/upload/.

Follow

Get every new post on this blog delivered to your Inbox.

Join other followers: