GeoLog

EGU

Who do you think most deserves the title of the Mother of Geology?

Who do you think most deserves the title of the Mother of Geology?

Much ink is spilled hailing the work of the early fathers of geology – and rightly so! James Hutton is the mind behind the theory of uniformitarianism, which underpins almost every aspect of geology and argues that processes operating at present operated in the same manner over geological time, while Sir Charles Lyell furthered the idea of geological time. William Smith, the coal miner and canal builder, who produced the first geological map certainly makes the cut as a key figure in the history of geological sciences, as does Alfred Wegener, whose initially contested theory of continental drift forms the basis of how we understand the Earth today.

Equally deserving of attention, but often overlooked, are the women who have made ground-breaking advances to the understanding of the Earth. But who the title of Mother of Geology should go to is up for debate, and we want your help to settle it!

In the style of our network blogger, Matt Herod, we’ve prepared a poll for you to cast your votes! We’ve picked five leading ladies of the geoscience to feature here, but they should only serve as inspiration. There are many others who have contributed significantly to advancing the study of the planet, so please add their names and why you think they are deserving of the title of Mother of Geology, in the comment section below.

We found it particularly hard to find more about women in geology in non-English speaking country, so if you know of women in France, Germany, Spain, etc. who made important contributions to the field, please let us know!

Mary Anning (1799–1847)

Credited to 'Mr. Grey' in Crispin Tickell's book 'Mary Anning of Lyme Regis' (1996).

Mary Anning. Credited to ‘Mr. Grey’ in Crispin Tickell’s book ‘Mary Anning of Lyme Regis’ (1996).

Hailing from the coastal town of Lyme Regis in the UK, Mary was born to Richard Anning, a carpenter with an interest in fossil collecting. On the family’s doorstep were the fossil-rich cliffs of the Jurassic coast. The chalky rocks provided a life-line to Mary, her brother and mother, when her father died eleven years after Mary was born. Upon his death, Richard left the family with significant debt, so Mary and her brother turned to fossil-collecting and selling to make a living.

Mary had a keen eye for anatomy and was an expert fossil collector. She and her brother are responsible for the discovery of the first Ichthyosaurs specimen, as well as the first plesiosaur.

When Mary started making her fossil discoveries in the early 1800s, geology was a burgeoning science. Her discoveries contributed to a better understanding of the evolution of life and palaeontology.

Mary’s influence is even more noteworthy given that she was living at a time when science was very much a man’s profession. Although the fossils Mary discovered where exhibited and discussed at the Geological Society of London, she wasn’t allowed to become a member of the recently formed union and she wasn’t always given full credit for her scientific discoveries.

Charlotte Murchinson (1788–1869)

Roderick and Charlotte Murchinson made a formidable team. A true champion of science, and geology in particular, Charlotte, ignited and fuelled her husband’s pursuit of a career in science after resigning his post as an Army officer.

Roderick Murchinson’s seminal work on establishing the first geologic sequence of Early Paleozoic strata would have not arisen had it not been for his wife’s encouragement. With Roderick, Charlotte travelled the length and breadth of Britain and Europe (along with notable friend Sir Charles Lylle), collecting fossils (one of the couple’s trips took them to Lyme Regis where they met and worked with Mary Anning, who later became a trusted friend) and studying the geology of the old continent.  Roderick’s first paper, presented at the Geological Society in 1825 is thought to have been co-written by Charlotte.

Not only was Charlotte a champion for the sciences, but she was a believer in gender equality. When Charles Lylle refused women to take part in his lectures at Kings Collage London, at her insistence he changed his views.

Florence Bascom (1862–1945)

By Camera Craft Studios, Minneapolis - Creator/Photographer: Camera Craft Studios, Minneapolis Medium: Black and white photographic print. Persistent Repository: Smithsonian Institution Archives Collection: Science Service Records, 1902-1965 (Record Unit 7091)

By Camera Craft Studios, Minneapolis – Creator/Photographer: Camera Craft Studios, Minneapolis. Persistent Repository: Smithsonian Institution Archives Collection: Science Service Records, 1902-1965 (Record Unit 7091)

Talk about a life of firsts: Florence Bascom, an expert in crystallography, mineralogy, and petrography, was the first woman hired by the U.S Geological Survey (back in 1896); she was the first woman to be elected to the Geological Society of America (GSA) Council (in 1924) and was the GSA’s first woman officer (she served as vice-president in 1930).

Florence’s PhD thesis (she undertook her studies at Johns Hopkins University, where she had to sit behind a screen during lectures so the male student’s wouldn’t know she was there!), was ground-breaking because she identified, for the first time, that rocks previously thought to be sediments were, in fact, metamorphosed lavas. She made important contributions to the understanding of the geology of the Appalachian Mountains and mapped swathes of the U.S.

Perhaps influenced by her experience as a woman in a male dominated world, she lectured actively and went to set-up the geology department at Bryn Mawr College, the first college where women could pursue PhDs, and which became an important 20th century training centre for female geologist.

Inge Lehmann (1888-1993)

There are few things that scream notoriety as when a coveted Google Doodle is made in your honour. It’s hardly surprising that Google made such a tribute to Inge Lehmann, on the 127th Anniversary of her birth, on 13th May 2015.

The Google Doodle celebrating Inge Lehmann's 127th birthday.

The Google Doodle celebrating Inge Lehmann’s 127th birthday.

A Danish seismologist born in 1888, Inge experienced her first earthquake as a teenager. She studied maths, physics and chemistry at Oslo and Cambridge Universities and went on to become an assistant to geodesist Niels Erik Nørlund. While installing seismological observatories across Denmark and Greenland, Inge became increasingly interested in seismology, which she largely taught herself. The data she collected allowed her to study how seismic waves travel through the Earth. Inge postulated that the Earth’s core wasn’t a single molten layer, as previously thought, but that an inner core, with properties different to the outer core, exists.

But as a talented scientist, Inge’s contribution to the geosciences doesn’t end there. Her second major discovery came in the late 1950s and is named after her: the Lehmann Discontinuity is a region in the Earth’s mantle at ca. 220 km where seismic waves travelling through the planet speed up abruptly.

Marie Tharp (1920-2006)

That the sea-floor of the Atlantic Ocean is traversed, from north to south by a spreading ridge is a well-established notion. That tectonic plates pull apart and come together along boundaries across the globe, as first suggested by Alfred Wegener, underpins our current understanding of the Earth. But prior to the 1960s and 1970s Wegener’s theory of continental drift was hotly debated and viewed with scepticism.

Bruce Heezen and Marie Tharp with the 1977 World Ocean’s Map. Credit: Marie Tharp maps, distributed via Flickr.

Bruce Heezen and Marie Tharp with the 1977 World Ocean’s Map. Credit: Marie Tharp maps, distributed via Flickr.

In the wake of the Second World War, in 1952, in the then under resourced department of Columbia University, Marie Tharp, a young scientist originally from Ypsilanti (Michigan), poured over soundings of the Atlantic Ocean. Her task was to map the depth of the ocean.

By 1977, Marie and her boss, geophysicist Bruce Heezen, had carefully mapped the topography of the ocean floor, revealing features, such as the until then unknown, Mid-Atlantic ridge, which would confirm, without a doubt, that the planet is covered by a thin (on a global scale) skin of crust which floats atop the Earth’s molten mantle.

Their map would go on to pave the way for future scientists who now knew the ocean floors weren’t vast pools of mud. Despite beginning her career at Columbia as a secretary to Bruce, Marie’s role in producing the beautiful world ocean’s map propelled her into the oceanography history books.

Over to you! Who do you think the title of the Mother of Geology should go to? We ran a twitter poll last week, asking this very question, and the title, undisputedly, went to Mary Anning. Do you agree?

By Laura Roberts, EGU Communications Officer

 

All references to produce this post are linked to directly from the text.

EGU, the European Geosciences Union, is Europe’s premier geosciences union, dedicated to the pursuit of excellence in the Earth, planetary, and space sciences for the benefit of humanity, worldwide. It is a non-profit international union of scientists with over 12,500 members from all over the world. Its annual General Assembly is the largest and most prominent European geosciences event, attracting over 11,000 scientists from all over the world.

This text was edited on 1 Septmember 2016 to correct the spelling of Weger. With thanks to Torbjörn Larsson for spotting the typo.

 

Revamping the EGU blog network: call for bloggers

Revamping the EGU blog network: call for bloggers

The EGU blog network is getting a make-over! Since 2013 the network blogs have enjoyed thought-provoking and engaging contributions by Simon Redfern, Dan Schillereff and Laura Roberts, Jon Tennant, as well as Will Morgan on a range of topics: from the workings of the inner Earth, through to geomorphology, palaeontology and air quality. However, the individual circumstances of the bloggers now mean that it is no longer viable for them to regularly update their blogs. As such, it is with sadness that we announce that we are saying goodbye to Atom’s Eye on the Planet, Geology Jenga, Green Tea and Velociraptors and Polluting the Internet. From the EGU, we thank Simon, Dan, Laura, Jon and Will for contributing excellent content to the blogs and wish them the very best of luck for the future.

To complete the make-over, we’d like to find new blogs to take the place of the departing network blogs. If you are an Earth, planetary or space researcher (a PhD student, an early career scientist, or a more established one) with a passion for communicating your work, we’d like to hear from you!

We currently feature blogs in international development (Geology for Global Development), geochemistry (GeoSphere), volcanology, (VolcanincDegassing) and geopolicy (Four Degrees). We’d love to receive blog proposals from fields within the Earth, planetary and space sciences we don’t yet feature. The network aims at fostering a diverse community of geoscience bloggers, sharing accurate information about geoscientific research in a language understandable not only to fellow scientists but also to the broader public. You, as an expert in your own research area, are in a better position than we are to share recent development in your area of research.

The benefits: apart from your site gaining exposure by having its posts listed on the front page of the EGU website, we will also share highlights of your work on our social media channels (Twitter, Facebook, LinkedIn, Google+, Instagram) and advertise the blog network at our General Assembly, which has over 12,000 attendees. And, of course, you’ll get to join a great community of bloggers!

With the exception of VolcanicDegassing, the network blogs are authored by early career researchers. In this call for bloggers we are particularly keen to add diversity to the network, and particularly welcome applications from more established scientists.

Having an existing blog is not a requirement for application. However, if you don’t have a blog already, we’d like you to have at least some experience of writing for a broader audience, be it as a guest blogger, or contributing to outlets such as The Conversation, for instance. In this case, let us know what you’d like your blog to be called, what topics you would cover, and link to articles you’ve published in the past.

If you’d like your blog (or blog idea) to be considered for our network, fill out this form by 8th August.

Please note that only blogs in English will be considered, as this is the EGU working language, and the language of the blog network. We particularly encourage applications from all European countries, not just English-speaking countries, but bloggers from outside Europe can also apply.

Feel free to contact the EGU Communications Officer Laura Roberts if you have any questions. In the meantime – happy blogging!

Gender equality in the geosciences: is it a numbers game?

Gender equality in the geosciences: is it a numbers game?

Here’s a tricky question for you. Try and name a woman in geoscience who has won an award for their studies in the last 5 years? How about a man? Chances are it is much easier to think of a male geoscientist who has won an award than a female one, but is that because more men win awards in geoscience than women (compared to the number of male and female geoscientists)?

This was the question that was raised at an innovative session co-organised by the European Research Council on ‘Promoting and supporting equality of opportunities in geosciences’, at the European Geosciences Union’s General Assembly in April this year. The session focused on gender based equality, and addressed the experiences of women from subject-based, institutional, national, and organisational levels. As well as the individual experiences described in the session, questions were also asked more broadly of the role of large organisations such as the publishing houses (including Nature and Science), the European Research Council and EGU – with a particular focus on recognition and awards.

Awards are not only useful for career progression for early career scientists (ECS), but also raise the profile of the researchers gaining them, who act as role models for junior staff and students. If women are missing out on awards that could not only impact negatively on the career prospects of those individuals, but also reflect a bigger issue in how women in geoscience are rewarded (or not) for their work.

The EGU has a unique insight into the question of gender equality in the geosciences as it has some data from its members, but also presents several of our discipline’s most prestigious awards and medals, to both advanced and early careers scientists. Alberto Montanari, the outgoing Chair of the EGU Awards Committee, presented the results of an investigation into the balance of male and female award winners.

First, some numbers. Every year the European Geosciences Union awards dozens of prizes to some of the world’s leading geoscientists. These prizes cover Union Medals and Awards, Division Medals, and Division Outstanding Early Career Scientists Awards (previously known as the Division Outstanding Young Scientists Award) . All award or medal nominees must be members of EGU to be eligible. The 2016 awards received 155 nominations, of which 16% were for female scientists. Of the total 49 prizes given this year eight were for female scientists (three of those were for early careers scientists). What is also important to note is the total number of EGU members divided by gender. In 2015, 69% of members were male and 31% were female, with the difference between male and female member proportions more pronounced for early careers scientists.

How visible are women in geoscience? (Mapping the Algerian shoreline credit: Filippo Dallosso, distributed via imaggeo.egu.eu)

How visible are women in geoscience? (Mapping the Algerian shoreline. Credit: Filippo Dallosso, distributed via imaggeo.egu.eu)

Secondly came an interesting question – how do we compute gender equality for award winners? Do we calculate the total number of female award winners per female membership percentage, or the total number of female award winners by the whole population of members – male and female? This question raises an interesting dilemma as both methods have positives and negatives. If we calculate the number of female winners by the population of female members then essentially this is saying men and women have an equal chance of winning within their gender grouping. However this masks the potential for women to be underrepresented within the organisation, as is currently the case in EGU right now.

On the other hand if we calculate the number of female award winners by the total population of members (male or female) the female winners become equally as visible as the male winners. This can act as a catalyst that places the EGU as a gender balanced society, which could in theory encourage greater female membership. On the negative side, it does make it more competitive (proportionally) for members that want to win an award, and this is not what gender equality should be about.

When asked which of the two approaches he thought would be more useful in promoting greater gender equality in the geosciences, Montanari said:

“My opinion is that it is more appropriate to refer to the percentage of female awardees over the female membership. I think this is much more protective for women themselves, as awarding excessive recognition weakens the value of awarded women. Many women have confirmed this interpretation.”

He also added:

“This is a delicate question that would deserve a more profound discussion.”

One final thought on this issue, came, repeatedly from both the audience and the speakers. Although it is vitally important that gender equality is addressed in geoscience, it is not the only type of equality that needs to be examined. We need to be aiming for parity in racial, national and disability accessibility, to name just a few areas and it is hoped that in the future, EGU sessions like this one will continue to challenge our preconceptions of equality and fairness in our science.

By Hazel Gibson, EGU General Assembly Press Assistant and Plymouth University PhD student.

Hazel is a science communicator and PhD student researching the public understanding of the geological subsurface at Plymouth University using a blend of cognitive psychology and geology, and was one of our Press Assistants during the week of the 2016 General Assembly.

 

Volcanic darkness marked the dawn of the Dark Ages

Volcanic darkness marked the dawn of the Dark Ages

The dawn of the Dark Ages coincided with a volcanic double event – two large eruptions in quick succession. Combined, they had a stronger impact on the Earth’s climate than any other volcanic event – or sequence of events – in the last 1200 years. Historical reports reveal that a mysterious dust cloud dimmed the sun’s rays between in 536 and 537 CE, a time followed by global societal decline. Now, we know the cause.

By combining state-or-the-art ice core measurements with historical records and a climate model, researchers from GEOMAR Helmholtz Centre for Ocean Research, Germany, and a host of international organisations showed that the eruptions were responsible for a rapid climatic downturn. The findings, published in Climatic Change, were presented at the EGU General Assembly in April 2016.

Explosive volcanic eruptions typically emit large volumes of ash and gas high into the atmosphere. The way this ash spreads depends both on how high up it’s propelled and the prevailing weather conditions. When it reaches the stratosphere, it has the capacity to spread far and wide over the Earth, meaning the eruption will have much more than a local impact.

Individually, these events were strong, but not that strong. Their combined force was what made their affect of the earth’s climate so significant. They occurred closely in time and were both in the Northern hemisphere.

Volcanic emissions reflect light back into space. Consequently, less light and, importantly, less heat reaches the surface, causing the Earth to cool. Diminishing sunlight following the eruptions resulted in a 2 °C drop in temperature, poor crop yields and population starvation. The drop in temperature led to a 3-5 year decline in Scandinavian agricultural productivity – a serious problem.

This double event had a major impact on agriculture in the northern hemisphere – particularly over Scandinavia. It’s likely that societies could withstand one bad summer, but several would have been a problem.

An ash covered plant via Wikimedia Commons.

An ash covered plant via Wikimedia Commons.

There’s agricultural evidence to support the theory too. Pollen records read from sediment cores can be used to work out when agricultural crops covered the land and when the land was ruled by nature. Scandinavian cores suggest there was a shift from agricultural crops to forest around the time of the eruption. There is some scepticism regarding the cause of this shift, but the implication is that when food decreases, so does the population, This means there’s no need to farm as much land, nor enough people to do so. In the absence of agriculture, nature takes over and trees once again cover the land.

By Sara Mynott, EGU Press Assistant and PhD candidate at the University of Exeter.

Sara is a science writer and marine science PhD candidate from the University of Exeter. She’s investigating the impact of climate change on predator-prey relationships in the ocean, and was one of our Press Assistants this year’s General Assembly.

Follow

Get every new post on this blog delivered to your Inbox.

Join other followers: