GeoLog

EGU

The best of Imaggeo in 2015: in pictures

The best of Imaggeo in 2015: in pictures

Last year we prepared a round-up blog post of our favourite Imaggeo pictures, including header images from across our social media channels and Immageo on Mondays blog posts of 2014. This year, we want YOU to pick the best Imaggeo pictures of 2015, so we compiled an album on our Facebook page, which you can still see here, and asked you to cast your votes and pick your top images of 2015.

From the causes of colourful hydrovolcanism, to the stunning sedimentary layers of the Grand Canyon, through to the icy worlds of Svaalbard and southern Argentina, images from Imaggeo, the EGU’s open access geosciences image repository, have given us some stunning views of the geoscience of Planet Earth and beyond. In this post, we highlight the best images of 2015 as voted by our Facebook followers.

Of course, these are only a few of the very special images we highlighted in 2015, but take a look at our image repository, Imaggeo, for many other spectacular geo-themed pictures, including the winning images of the 2015 Photo Contest. The competition will be running again this year, so if you’ve got a flare for photography or have managed to capture a unique field work moment, consider uploading your images to Imaggeo and entering the 2016 Photo Contest.

Different degrees of oxidation during hydrovolcanism, followed by varying erosion rates on Lanzarote produce brilliant colour contrasts in the partially eroded cinder cone at El Golfo. Algae in the lagoon add their own colour contrast, whilst volcanic bedding and different degrees of welding in the cliff create interesting patterns.

 Grand Canyon . Credit: Credit: Paulina Cwik (distributed via imaggeo.egu.eu)

Grand Canyon . Credit: Credit: Paulina Cwik (distributed via imaggeo.egu.eu)

The Grand Canyon is 446 km long, up to 29 km wide and attains a depth of over a mile 1,800 meters. Nearly two billion years of Earth’s geological history have been exposed as the Colorado River and its tributaries cut their channels through layer after layer of rock while the Colorado Plateau was uplifted. This image was submitted to imaggeo as part of the 2015 photo competition and theme of the EGU 2015 General Assembly, A Voyage Through Scales.

Water reflection in Svalbard. Credit: Fabien Darrouzet (distributed via imaggeo.egu.eu)

Water reflection in Svalbard. Credit: Fabien Darrouzet (distributed via imaggeo.egu.eu)

Svalbard is dominated by glaciers (60% of all the surface), which are important indicators of global warming and can reveal possible answers as to what the climate was like up to several hundred thousand years ago. The glaciers are studied and analysed by scientists in order to better observe and understand the consequences of the global warming on Earth.

Waved rocks of Antelope slot canyon - Page, Arizona by Frederik Tack (distributed via imaggeo.egu.eu).

Waved rocks of Antelope slot canyon – Page, Arizona by Frederik Tack (distributed via imaggeo.egu.eu).

Antelope slot canyon is located on Navajo land east of Page, Arizona. The Navajo name for Upper Antelope Canyon is Tsé bighánílíní, which means “the place where water runs through rocks.”
Antelope Canyon was formed by erosion of Navajo Sandstone, primarily due to flash flooding and secondarily due to other sub-aerial processes. Rainwater runs into the extensive basin above the slot canyon sections, picking up speed and sand as it rushes into the narrow passageways. Over time the passageways eroded away, making the corridors deeper and smoothing hard edges in such a way as to form characteristic ‘flowing’ shapes in the rock.

 Just passing Just passing. Credit: Camille Clerc (distributed via imaggeo.egu.eu)

Just passing. Credit: Camille Clerc (distributed via imaggeo.egu.eu)

An archeological site near Illulissat, Western Greenland On the back ground 10 000 years old frozen water floats aside precambrian gneisses.

Sarez lake, born from an earthquake. Credit: Alexander Osadchiev (distributed via imaggeo.egu.eu)

Sarez lake, born from an earthquake. Credit: Alexander Osadchiev (distributed via imaggeo.egu.eu)

Beautiful Sarez lake was born in 1911 in Pamir Mountains. A landslide dam blocked the river valley after an earthquake and a blue-water lake appeared at more than 3000 m over sea level. However this beauty is dangerous: local seismicity can destroy the unstable dam and the following flood will be catastrophic for thousands Tajik, Afghan, and Uzbek people living near Mugrab, Panj and Amu Darya rivers below the lake.

Badlands national park, South Dakota, USA. Credit: Iain Willis (distributed via imaggeo.egu.eu)

Badlands national park, South Dakota, USA. Credit: Iain Willis (distributed via imaggeo.egu.eu)

Layer upon layer of sand, clay and silt, cemented together over time to form the sedimentary units of the Badlands National Park in South Dakota, USA. The sediments, delivered by rivers and streams that criss-crossed the landscape, accumulated over a period of millions of years, ranging from the late Cretaceous Period (67 to 75 million years ago) throughout to the Oligocene Epoch (26 to 34 million years ago). Interbedded greyish volcanic ash layers, sandstones deposited in ancient river channels, red fossil soils (palaeosols), and black muds deposited in shallow prehistoric seas are testament to an ever changing landscape.

Late Holocene Fever. Credit: Christian Massari (distributed via imaggeo.egu.eu)

Late Holocene Fever. Credit: Christian Massari (distributed via imaggeo.egu.eu)

Mountain glaciers are known for their high sensitivity to climate change. The ablation process depends directly on the energy balance at the surface where the processes of accumulation and ablation manifest the strict connection between glaciers and climate. In a recent interview in the Gaurdian, Bernard Francou, a famous French glaciologist, has explained that the glacier depletion in the Andes region has increased dramatically in the second half of the 20th century, especially after 1976 and in recent decades the glacier recession moved at a rate unprecedented for at least the last three centuries with a loss estimated between 35% and 50% of their area and volume. The picture shows a huge fall of an ice block of the Perito Moreno glacier, one of the most studied glaciers for its apparent insensitivity to the recent global warming.

 Nærøyfjord: The world’s most narrow fjord . Credit: Sarah Connors (distributed via imaggeo.egu.eu)

Nærøyfjord: The world’s most narrow fjord . Credit: Sarah Connors (distributed via imaggeo.egu.eu)

Feast your eyes on this Scandinavia scenic shot by Sarah Connors, the EGU Policy Fellow. While visiting Norway, Sarah, took a trip along the world famous fjords and was able to snap the epic beauty of this glacier shaped landscape. To find out more about how she captured the shot and the forces of nature which formed this region, be sure to delve into this Imaggeo on Mondays post.

The August 2015 header images was this stunning image by Kurt Stuewe, which shows the complex geology of the Helvetic Nappes of Switzerland. You can learn more about the tectonic history of The Alps by reading this blog post on the EGU Blogs.

 (A)Rising Stone. Credit: Marcus Herrmann (distributed via imaggeo.egu.eu)

(A)Rising Stone. Credit: Marcus Herrmann (distributed via imaggeo.egu.eu)

The September 2015 header images completes your picks of the best images of 2015. (A)Rising Stone by Marcus Herrmann,  pictures a chain of rocks that are part of the Schrammsteine—a long, rugged group of rocks in the Elbe Sandstone Mountains located in Saxon Switzerland, Germany.

If you pre-register for the 2016 General Assembly (Vienna, 17 – 22 April), you can take part in our annual photo competition! From 1 February up until 1 March, every participant pre-registered for the General Assembly can submit up three original photos and one moving image related to the Earth, planetary, and space sciences in competition for free registration to next year’s General Assembly!  These can include fantastic field photos, a stunning shot of your favourite thin section, what you’ve captured out on holiday or under the electron microscope – if it’s geoscientific, it fits the bill. Find out more about how to take part at http://imaggeo.egu.eu/photo-contest/information/.

EGU 2016: Registration open & short courses, townhall and splinter meeting requests

EGU 2016: Registration open & short courses, townhall and splinter meeting requests

The EGU General Assembly brings together geoscientists from all over the world to one meeting that covers all disciplines of the Earth, planetary and space sciences. The conference is taking place in Vienna on 17–22 April 2016, providing an opportunity for both established scientists and early career researchers to present their work and discuss their ideas with experts in all fields of the geosciences.

Following from last year’s success, the EGU General Assembly will have a theme: Active Planet. You’ll be able to find more information about it on the EGU 2016 website over the next few weeks so keep your eyes peeled! The theme does not constrain the topics to be presented at the Assembly; rather, it will add to the conference experience.

Registration and abstract submission

Early registration for the conference is open until 17 March 2016. You can register online on the Registration section of the General Assembly website. Note that EGU members benefit from reduced member rates; to become a member, or renew your EGU membership, go to www.egu.eu/membership/.

You can get a feel for the great geoscience that will be discussed at the meeting by browsing through the EGU 2016 sessions. Clicking on ‘please select’ allows you to search for sessions by Programme Group. You’ll then be able to view the sessions in more detail and submit an abstract to its relevant session. The deadline for abstract submission is 13 January 2016, 13:00 CET.

Submit your short course ideas and townhall and splinter meeting requests

Short courses are workshop-type sessions that provide participants with the opportunity to learn about a new subject or further their knowledge in a particular area. They last between 90 and 180 minutes. If you have an idea for a short course, you can submit it via the EGU 2016 website until 13 January.

Also available on the conference website are the request forms for townhall and splinter meetings.

More details about the short courses, splinter and townhall meetings at the conference will be given in an upcoming blog post.

For more information about the General Assembly, please see the EGU 2016 website.

There are even more benefits to choosing a PICO session at EGU 2016!

There are even more benefits to choosing a PICO session at EGU 2016!

Some of the sessions scheduled for the upcoming EGU General Assembly are PICO only sessions. This means that, rather than being oral or poster format, they involve Presenting Interactive COntent (PICO). The aim of these presentations is to highlight the essence of a particular research area – just enough to get the audience excited about a topic without overloading them with information.

PICO sessions start with a series of 2 minute long presentations – one from each author. They can be a Power Point, a movie, an animation, or simply a PDF showing your research on a display. After the 2 minute talks, the audience can explore each presentation on touch screens, where authors are also available to answer questions and discuss their research in more detail.

This format combines the best of oral and poster presentations, allowing researchers to stand up and be recognised for great research while giving an oral contribution as well as discussing their work in detail and network with other participants. This year we are also making a few improvements to the layout of the PICO presentation areas in the large halls to minimise noise disruption to presenters.

An exciting development for the 2016 General Assembly is that PICO presentations are now included in the Outstanding Student Poster Awards (as they were formerly known), and have now been renamed to Outstanding Student Poster and PICO (OSPP) Awards.

The aim of the award is to improve the overall quality of poster and PICO presentations and most importantly, to foster the excitement of early career scientists in presenting their work. To be considered for the OSPP award, you must be the first author and personally present the PICO at the conference, as well as satisfy one of the following criteria:

  • being a current undergraduate (e.g., BSc) or postgraduate (e.g., MSc, PhD) student;
  • being a recent undergraduate or postgraduate student (conferral of degree after 1 January of the year preceding the conference) who are presenting their thesis work.

Entering couldn’t be easier! Make sure you nominate yourself when you submit your abstract on-line. You’ll receive a letter, known as ‘Letter of Schedule’, confirming your presentation has been accepted, which will also include a link by which to register for the award. Before the conference, make sure you include the OSPP label (which you can find here) to your PICO presentation header so that the judges of the OSPP award now to evaluate your presentation.

To learn more about PICO presentations see the General Assembly website. You can also check out the short introductory video below:

Geoscience hot topics – Part I: The Earth’s past and its origin

Geoscience hot topics – Part I: The Earth’s past and its origin

What are the most interesting, cutting-edge and compelling research topics within the scientific areas represented in the EGU divisions? Ground-breaking and innovative research features yearly at our annual General Assembly, but what are the overarching ideas and big research questions that still remain unanswered? We spoke to some of our division presidents and canvased their thoughts on what the current Earth, ocean and planetary hot topics will be.

There are too many to fit in a single post so we’ve brought some of them together in a series of posts which will tackle three main areas: the Earth’s past and its origin, the Earth as it is now and what its future looks like, while the final post of the series will explore where our understanding of the Earth and its structure is still lacking. We’d love to know what the opinions of the readers of GeoLog are on this topic too, so we welcome and encourage lively discussion in the comment section!

 

The Earth’s past and its origin

Rephrasing the famous sentence by James Hutton, i.e. the present is the key to the past, we can even say that the past is the key to the future – a better understanding of past Earth processes can help understand why and how our planet evolved to have oceans, an atmosphere, a planetary magnetic field as well as the ability to sustain life. Not only that, a greater understanding of the Earth’s past can aid in finding solutions to present day problems. A strong interdisciplinary research effort is required to delve into the Earth’s past and that makes it one of the most important geoscience hot topics, albeit very broad.

Life on Earth and the physical environment

Zircons in rocks from Jack Hills in Western Australia provide evidence of oceans 4.4 b.y. ago and of conditions that may have haboured life. The remarkable thing is that these rocks are 300 million years older than the 3.8 billion year old rocks from Greenland, which were thought to hold the oldest evidence for life on Earth, until now.

Image by Robert Simmon, based on data from the University of Maryland’s Global Land Cover Facility

Jack Hills, Western Australia. Image by Robert Simmon, based on data from the University of Maryland’s Global Land Cover Facility

These findings are no doubt very exciting, but they also go hand in hand with gaining a greater understanding about the physical environment in which these early life forms evolved. According to Helmut Weissert, President of the Stratigraphy, Sedimentology and Palaeontology Division (SSP), understanding the co-evolution of life and the physical environment in Earth’s history is one of the biggest challenges for current and future scientists. Understanding past changes of the System Earth will facilitate the evaluation of man’s role as a major geological agent affecting global material and geochemical cycles in the Anthropocene.

The work of scientists in the SSP fields on understanding how the evolution of life was affected by major climatic perturbations is particularly timely, given the ongoing debate as to whether the presence of humans on Earth is potentially driving a sixth mass extinction event. Not only that, a big research question still unanswered is how did catastrophic events during the Earth’s history also affect evolutionary rates?

Developing new models and tools which might aid investigation in these areas is at the forefront of challenges to come, along with a greater interaction between related disciplines, for instance (but of course, not limited to!) the geosciences and genetics.

A changing inner Earth

The Earth’s magnetic field is one of ingredients for the presence of life on Earth, because it screens most of the cosmic rays that otherwise would penetrate in major quantities into the atmosphere and reach the surface, being dangerous for human health.

“A recent discovery is that the absence of magnetic field would cause serious damages not only to humans through a significant increase of cancer cases, but also to plants”, say Angelo De Santis, President of the Earth Magnetism and Rock Physics Division (EMRP), “implying that geomagnetic field reversals characterised by times with very low intensity of the field, would have serious implications for life on the planet”.

Another way to understand this aspect would be to have a look at the past. One of the (many) tools which can be used to understand what our planet might have looked like in its infancy is palaeomagnetism. This is especially true when it comes to one of the biggest conundrums of the Precambrian: when did plate tectonics, as we understand them now, start?

That there was perhaps some form of plate motions in the Earth’s early life is likely, but exactly what the style of those plate motions were during the Precambrian is still highly debated. Palaeomagnetic directions measured over time are used to estimate lateral plate motions associated with modern day style plate tectonics involving subduction. If similar plate motions can be identified in rocks younger than 500Ma then they might support lateral plate motions early in the Earth’s history. This, says Angelo De Santis, is one of the most exciting areas of research within Earth magnetism.

 Earth Magnetic Field Declination from 1590 to 1990 by U.S. Geological Survey (USGS). Licensed under Public Domain via Wikimedia Commons . Click on the image to see how the field changes over time.

Earth Magnetic Field Declination from 1590 to 1990 by U.S. Geological Survey (USGS). Licensed under Public Domain via Wikimedia Commons . Click on the image to see how the field changes over time.

Not only that, studying the strength of the geomagnetic field (which is generated in the liquid outer core by a process known as the geodynamo) and how it changes over different time scales can give us information about the early inner structure of the planet. For instance, news of a new date for the age of the formation of the inner core, after researches identified the sharpest increase in the strength of the Earth’s magnetic field, hit the headlines recently. The findings imply that maybe some of the views Earth scientists hold about the core of the Earth might need to be revised!

Which leads us onto secular variation – the study of how the geomagnetic field changes, not only in strength but also in direction – because if the early core is different to how it was previously thought, is the understanding of secular variation also affected? The implications are far reaching, but a highlight, according to Angelo De Santis, has to be how the findings might affect how periods of large change (more commonly known as geomagnetic reversals) are understood. Therefore, it is key that the evolution of the geodynamo is better understood, so that scientists might be able to assess the possibility of an imminent excursion (a large change of the field, but not a permanent flip of the direction) or reversal.

From the inner Earth to the surface

If studying the inner depths of the Earth in the past might give us clues about the present and future of the planet’s core, so to on and above the surface the past can be the key to the future.

Geological time spiral" by United States Geological Survey - Graham, Joseph, Newman, William, and Stacy, John, 2008, The geologic time spiral—A path to the past (ver. 1.1): U.S. Geological Survey General Information Product 58, poster, 1 sheet. Available online at http://pubs.usgs.gov/gip/2008/58/. Licensed under Public Domain via Commons.

Geological time spiral by United States Geological Survey – Graham, Joseph, Newman, William, and Stacy, John, 2008, The geologic time spiral—A path to the past (ver. 1.1): U.S. Geological Survey General Information Product 58, poster, 1 sheet. Available online at http://pubs.usgs.gov/gip/2008/58/. Licensed under Public Domain via Commons.

Present day climate change is a given, but predictions of how the face of the Earth might change as a result remain difficult to make while, at the same time, its consequences are not yet fully understood. Studying the climate of the past and how the biosphere, oceans and the Earth’s surface (including erosion and weathering processes), responded to abrupt and potentially damaging changes in Earth’s past climate provides a starting point to make forecasts about the future.

“A better time resolution of geological archives means we are able to further test present day climate, weathering and ocean models,” says SSP President Helmut Weissert.

And so, not only does the past tell us where we come from and how the Earth became the only planet in our Solar System capable of sustain complex forms of life, a better understanding of its origins and past behaviour might just help us improve the future too.

Next time, in the Geosciences hot topics short series, we’ll be looking at our understanding of the Earth as we know it now and how we might be able to adapt to the future. The question of how we develop the needs for an ever growing population in a way that is sustainable opens up exciting research avenues in the EMRP and SSP Divisions, as well as the Energy, Resources and the Environment (ERE), Seismology (SM) and Earth and Space Science Informatics (ESSI) Divisions.

Follow

Get every new post on this blog delivered to your Inbox.

Join other followers: