GeoLog

Biogeosciences

Announcing the winners of the EGU Photo Contest 2016!

Announcing the winners of the EGU Photo Contest 2016!

The selection committee received over 200 photos for this year’s EGU Photo Contest, covering fields across the geosciences. Participants at the 2016 General Assembly have been voting for their favourites throughout the week  of the conference and there are three clear winners. Congratulations to 2016’s fantastic photographers!

 Glowing_Ice. Credit:  Vytas Huth (distributed via  imaggeo.egu.eu). Ice on Jokulsarlon beach in Iceland. Ice calving off the Breidamerkurjokull, one of the glaciers comprising the Vatnajokull, the largest glacier in Iceland. The is retreating rapidly, and in the process has created a large glacial lagoon known for its spectacular icebergs.

Glowing_Ice. Credit: Katharine Cashman (distributed via imaggeo.egu.eu). Ice on Jokulsarlon beach in Iceland. Ice calving off the Breidamerkurjokull, one of the glaciers comprising the Vatnajokull, the largest glacier in Iceland. The is retreating rapidly, and in the process has created a large glacial lagoon known for its spectacular icebergs.

 'Living flows'. Credit:  Marc Girons Lopez (distributed via  imaggeo.egu.eu). River branches and lagoons in the Rapa river delta, Sarek National Park, northern Sweden. The lush vegetation creates a stark contrast with the glacial sediments transported by the river creating a range of tonalities.

Living flows’. Credit: Marc Girons Lopez (distributed via imaggeo.egu.eu). River branches and lagoons in the Rapa river delta, Sarek National Park, northern Sweden. The lush vegetation creates a stark contrast with the glacial sediments transported by the river creating a range of tonalities.

 'There is never enough time to count all the stars that you want.' . Credit:  Vytas Huth (distributed via  imaggeo.egu.eu). The centre of the Milky Way taken near Krakow am See, Germany. Some of the least light-polluted atmosphere of the northern german lowlands.

‘There is never enough time to count all the stars that you want.’ . Credit: Vytas Huth (distributed via imaggeo.egu.eu). The centre of the Milky Way taken near Krakow am See, Germany. Some of the least light-polluted atmosphere of the northern german lowlands.

In addition, this year, to celebrate the theme of the EGU 2016 General Assembly, Active Planet, the photo that best captured the theme of the conference was selected by the judges. The winner is the stunning ‘Mirror Mirror in the sea’, by Mario Hopmann! Congratulations! Scroll to the top of this post to view Mario’s image.

Imaggeo is the EGU’s online open access geosciences image repository. All geoscientists (and others) can submit their photographs and videos to this repository and, since it is open access, these images can be used for free by scientists for their presentations or publications, by educators and the general public, and some images can even be used freely for commercial purposes. Photographers also retain full rights of use, as Imaggeo images are licensed and distributed by the EGU under a Creative Commons licence. Submit your photos at http://imaggeo.egu.eu/upload/.

Methane seeps – oases in the deep Arctic Ocean

Methane seeps – oases in the deep Arctic Ocean

The deep Arctic Ocean is not known for its wildlife. 1200 metres from the surface, well beyond where light penetrates the water and at temperatures below zero, it it’s a desolate, hostile environment. There are, however, exceptions to this, most notably around seeps in the seafloor that leak methane into the water above.

Here, methane is the fuel for life, not sunlight, creating oases in an otherwise barren landscape. On the Vestnesa Ridge, just off Svalbard, great plumes of methane stretch some 800 metres above the seabed. These seeps occur within pockmarks, depressions in the sea’s soft sediment, which span hundreds of metres across. At their base lies carbonate reefs, wide microbial mats and thriving meadows of tubeworms, which stretch out into the current. The microbes turn the methane into something much more valuable – carbon, and form the base of the deep Arctic food chain.

Emmelie Åström, a PhD student from the Centre for Arctic Gas Hydrate, Environment and Climate, has been using high definition seafloor images to work out what effect these seeps have on the surrounding biota. The images reveal that the carbonate rocks that form at the seep’s margins create a unique habitat in an otherwise featureless environment. These structures provide shelter for a huge variety of animals, which benefit from a food chain fuelled by methane. She presented her results at the EGU General Assembly this week.

Just some of the many marine animals found around methane seeps. Credit: CAGE

Just some of the many marine animals found around methane seeps. Credit: CAGE

The communities are totally different just tens of metres from the seep. Utterly dependent on the methane to survive, the animals of the deep Arctic Ocean stick close to their fuel.

“We took photos going from the outside of the pockmark inside and you can see how the seafloor is changing, also the animal distribution and aggregation. When you come inside a pockmark, the seafloor changes very dramatically,” explains Åström.

There are similarities between these seeps and others around the world, but none have been studied so high in the Arctic.

“The Arctic is a place where lots of things are happening right now and it’s important to understand what kind of animals are present here.”

By towing a camera across the sediment and taking samples to match, Åström was able to map out the marine life in these deep, dark oceans. “The typical view you have is that it’s very barren and that there’s not so many big animals here,” she says, but her images tell a different story. These vibrant patches may be separated by swathes of barren sediment, but they’re thriving, and may have an important role to play.

By Sara Mynott, EGU General Assembly Press Assistant and PhD Student at University of Exeter.

Sara is a science writer and marine science PhD candidate from the University of Exeter. She’s investigating the impact of climate change on predator-prey relationships in the ocean and is one of our Press Assistants this week at the Assembly.

Photo Contest finalists 2016 – who will you vote for?

The selection committee received over 400 photos for this year’s EGU Photo Contest, covering fields across the geosciences. The fantastic finalist photos are below and they are being exhibited in Hall X2 (basement, Brown Level) of the Austria Center Vienna – see for yourself!

Do you have a favourite? Vote for it! There is a voting terminal (also in Hall X2), just next to the exhibit. The results will be announced on Friday 22 April during the lunch break (at 12:15).

 'Icebound blades of grass' . Credit: Katja Laute (distributed via imaggeo.egu.eu). A close up of blades of grass totally coated with ice. The photo was taken at sunset along the shoreline of Selbusjøen, a lake in middle Norway. The coating of the ice was built through the interplay of wave action and the simultaneously freezing of the water around the single blades of grass.

‘Icebound blades of grass’. Credit: Katja Laute (distributed via imaggeo.egu.eu). A close up of blades of grass totally coated with ice. The photo was taken at sunset along the shoreline of Selbusjøen, a lake in middle Norway. The coating of the ice was built through the interplay of wave action and the simultaneously freezing of the water around the single blades of grass.

 'There is never enough time to count all the stars that you want.' . Credit: Vytas Huth (distributed via imaggeo.egu.eu). The centre of the Milky Way taken near Krakow am See, Germany. Some of the least light-polluted atmosphere of the northern german lowlands.

‘There is never enough time to count all the stars that you want’. Credit: Vytas Huth (distributed via imaggeo.egu.eu). The centre of the Milky Way taken near Krakow am See, Germany. Some of the least light-polluted atmosphere of the northern german lowlands.

 'Full moon over Etna's fire'. Credit: Severine Furst (distributed via imaggeo.egu.eu). Etna is one of the most active volcano on Earth but also one the most monitored. As soon as instruments show any signs of volcanic activity, scientists from the Istituto Nazionale di Geofisica e Vulcanologia (INGV) of Catania urge to the summit to gather various eruption data. In this summer evening, the fresh wind sweep the clouds to reveal the rise of the full moon over one of Etna's summit craters where a strombolian eruption is taking place.

‘Full moon over Etna’s fire’. Credit: Severine Furst (distributed via imaggeo.egu.eu). Etna is one of the most active volcano on Earth but also one the most monitored. As soon as instruments show any signs of volcanic activity, scientists from the Istituto Nazionale di Geofisica e Vulcanologia (INGV) of Catania urge to the summit to gather various eruption data. In this summer evening, the fresh wind sweep the clouds to reveal the rise of the full moon over one of Etna’s summit craters where a strombolian eruption is taking place.

 'There is never enough time to count all the stars that you want.' . Credit: Vytas Huth (distributed via imaggeo.egu.eu). Ice on Jokulsarlon beach in Iceland. Ice calving off the Breidamerkurjokull, one of the glaciers comprising the Vatnajokull, the largest glacier in Iceland. The is retreating rapidly, and in the process has created a large glacial lagoon known for its spectacular icebergs.

‘Glowing Ice’. Credit: Vytas Huth (distributed via imaggeo.egu.eu). Ice on Jokulsarlon beach in Iceland. Ice calving off the Breidamerkurjokull, one of the glaciers comprising the Vatnajokull, the largest glacier in Iceland. The is retreating rapidly, and in the process has created a large glacial lagoon known for its spectacular icebergs.

 'Ice lace flower'. Credit: Maria Elena Popa (distributed via imaggeo.egu.eu). Early morning shot of a spider web with frozen water droplets. The photo has been turned upside down, to make it look like a flower.

‘Ice lace flower’. Credit: Maria Elena Popa (distributed via imaggeo.egu.eu). Early morning shot of a spider web with frozen water droplets. The photo has been turned upside down, to make it look like a flower.

 Sphalerite's "Transformer"'. Credit: Dmitry Tonkacheev (distributed via imaggeo.egu.eu). The bulk of Au wire "boards" on the dark-brown phase surface in the form of fascination crystals (usually arborescent). Some of them look like a weapon from the "Transformers" arsenal or parts of his armor. Also bright diamond luster of this creature makes our "Knight" even more ultra-modern.

‘Sphalerite’s “Transformer”‘. Credit: Dmitry Tonkacheev (distributed via imaggeo.egu.eu). The bulk of Au wire “boards” on the dark-brown phase surface in the form of fascination crystals (usually arborescent). Some of them look like a weapon from the “Transformers” arsenal or parts of his armor. Also bright diamond luster of this creature makes our “Knight” even more ultra-modern.

 'Nimbostratus painting the sky'. Credit: y María Burguet (distributed via imaggeo.egu.eu). This photo was taken in Valencia (Spain) during a storm formation. Nimbostratus are described as a grey cloud cover with a veiled appearance due to the precipitation (liquid or solid) holded within them. They are formed when a large layer of relatively warm and humid air ascend above a cold air mass. Together with the Altostratus, it is the core of a warm front.

‘Nimbostratus painting the sky’. Credit: María Burguet (distributed via imaggeo.egu.eu). This photo was taken in Valencia (Spain) during a storm formation. Nimbostratus are described as a grey cloud cover with a veiled appearance due to the precipitation (liquid or solid) held within them. They are formed when a large layer of relatively warm and humid air ascend above a cold air mass. Together with the Altostratus, it is the core of a warm front.

 'Living flows'. Credit: Marc Girons Lopez (distributed via imaggeo.egu.eu). River branches and lagoons in the Rapa river delta, Sarek National Park, northern Sweden. The lush vegetation creates a stark contrast with the glacial sediments transported by the river creating a range of tonalities.

‘Living flows’. Credit: Marc Girons Lopez (distributed via imaggeo.egu.eu). River branches and lagoons in the Rapa river delta, Sarek National Park, northern Sweden. The lush vegetation creates a stark contrast with the glacial sediments transported by the river creating a range of tonalities.

 'View of the Mausoleum'. Credit: Mike Smith (distributed via imaggeo.egu.eu). The north Antrim coast in Northern Ireland, featuring one of the most spectacular coastal roads. In the distance the Mussenden Temple, built in 1785 as a reclusive library 40 m above the Atlantic Ocean.

‘View of the Mausoleum’. Credit: Mike Smith (distributed via imaggeo.egu.eu). The north Antrim coast in Northern Ireland, featuring one of the most spectacular coastal roads. In the distance the Mussenden Temple, built in 1785 as a reclusive library 40 m above the Atlantic Ocean.

 'Frozen angel'. Credit: Mikhail Varentsov (distributed via imaggeo.egu.eu). Go-Pro camera, covered by hoarfrost, at sunrise, looks like fantasy-style angel with sword and banner. Photo made during NABOS-2015 expedition.

‘Frozen angel’. Credit: Mikhail Varentsov (distributed via imaggeo.egu.eu). Go-Pro camera, covered by hoarfrost, at sunrise, looks like fantasy-style angel with sword and banner. Photo made during NABOS-2015 expedition.

In addition, this year, to celebrate the theme of the EGU 2016 General Assembly, Active Planet, the photo that best captured the theme of the conference was selected by the judges. The winner is this stunning photo entitled ‘Mirror mirror in the sea…’, by Mario Hoppmann! Congratulations! This too is being exhibited in Hall X2 (basement, Brown Level) of the Austria Center Vienna.

 'Mirror Mirror in the sea...' . Credit: Mario Hoppmann (distributed via imaggeo.egu.eu). A polar bear is testing the strength of thin sea ice. Polar bears and their interaction with the cryosphere are a prime example of how the biosphere is able to adapt to an "Active Planet". They are also a prime example of how the anthropogenic influence on Earth's climate system endangers other lifeforms.

‘Mirror Mirror in the sea…’ . Credit: Mario Hoppmann (distributed via imaggeo.egu.eu). A polar bear is testing the strength of thin sea ice. Polar bears and their interaction with the cryosphere are a prime example of how the biosphere is able to adapt to an “Active Planet”. They are also a prime example of how the anthropogenic influence on Earth’s climate system endangers other lifeforms.

Imaggeo on Mondays: Through the hole

Imaggeo on Mondays: Through the hole

The Gunung Mulu National Park is an area so geologically remarkable and home to such incredibly diverse fauna and flora it has been declared a World Heritage Area.  Located on the island of Borneo, the park is famous for its over 100 different palm species and 3500 other plant types. Geologically speaking, a trip though the varied landscapes will be rewarded with views of deep gorges and hidden valleys, as well as towering limestone and sandstone pinnacles. The predominantly calcareous landscape means most make the journey to remote area to catch a glimpse of the world’s second largest cave chamber. With dimensions of 600 m by 415 m and 80 m high, Sarawak Chamber is a natural wonder worthy of making the journey to Borneo for!

“The picture was taken in February 2014 while I was on a two month trip to Indonesia and Malaysia after graduating from my Master studies. Eventually I found one of the most beautiful places on the island of Borneo: the Gunung Mulu National Park,” explains Juliane Krenz, a PhD candidate at the Department of Environmental Science of the University of Basel.

Aside from the staggering Sarawak Chamber, the national park is crisscrossed by at least 295 km of explored caves.  Made up of the Mulu Sandstone Formation, overlain by the Melinau Formation – which formed in coral rich lagoons some 20 million years ago – the caves are home to a host of species, from bats to swiftlets.

“After spending a few days exploring one of the largest cave systems in the world, I wanted to get deeper into the rainforest and climb Mount Api to see the so-called “pinnacles” – an incredible limestone karst formation everybody was talking about,” Juliane says.

The journey to reach the “pinnacles” involved an hour’s boat ride and three hours walk through the rainforest, eventually reaching a small base camp impressive for its setting: three houses next to a crystal clear stream surrounded by mountains covered in dense forest.

The hike to the sandstone spires began in earnest the next morning. To reach the impressive formations Juliane had to climb an endless number of natural steps made of slippery roots and stones of varying heights from a comfortable 20cm up to 1m, with a total elevation increase of 1200 m in little over 2km – turning the hike into an adventurous climbing trip.

“After 3 hours hiking mostly vertically we reached the top and looked down on an innumerable amount of silver-greyish rock pinnacles spiking out between the dense bright green forest, some of them being up to 40m tall. None of us would have guessed that there were so many,” describes Juliane.

Capturing the beauty of the setting was no easy task.

“I had seen many impressive photographs of the spikes but I was looking for the special focus. Eventually I chose the hole as a frame making the largest pinnacles look like they are part of a miniature world – like me wandering through the rain forest.”

By Laura Roberts Artal , EGU Communications Officer and Juliane Krenz, a PhD candidate at the Department of Environmental Science of the University of Basel.

For more information on the Gunung National Park:

In 1977-78 there was a large expedition (followed by many others known as the Mulu Cave project) founded by the Royal Geograpical Society to explore the dimensions of the cave system. The “pinnacles” at Mount Api are part of the limestone ridge between North Thailand and New Guinea.  The area is full of limestone spikes of various sizes (from few centimeters up to several meters) that are formed through weathering and dissolution over centuries. Nowadays, most research is focused on the ecology and biodiversity in the caves and the surrounding areas.

An earlier version of this post stated Sarawak Chamber was the largest cave chamber in the world. That accolade goes to Hang Sơn Đoòng in Vietnam. With thanks to @TerjeSolbakk for helping us improve this post. 

 

Imaggeo is the EGU’s online open access geosciences image repository. All geoscientists (and others) can submit their photographs and videos to this repository and, since it is open access, these images can be used for free by scientists for their presentations or publications, by educators and the general public, and some images can even be used freely for commercial purposes. Photographers also retain full rights of use, as Imaggeo images are licensed and distributed by the EGU under a Creative Commons licence. Submit your photos at http://imaggeo.egu.eu/upload/.

Follow

Get every new post on this blog delivered to your Inbox.

Join other followers: