GeoLog

Laura Roberts-Artal

Laura Roberts Artal is the Communications Officer at the European Geosciences Union. She is responsible for the management of the Union's social media presence and the EGU blogs, where she writes regularly for the EGU's official blog, GeoLog. She is also the point of contact for early career scientists (ECS) at the EGU Office. Laura has a PhD in palaeomagnetism from the University of Liverpool. Laura tweets at @LauRob85.

GeoTalk: Stacia Gordon

Geotalk is a regular feature highlighting early career researchers and their work. Following the EGU General Assembly, we spoke to Stacia Gordon, the winner of the Tectonics and Structural Geology Division Outstanding Young Scientist Award, 2014.

Meet Stacia! (Credit: Stacia M. Gordon)

Meet Stacia! (Credit: Stacia M. Gordon)

First, could you introduce yourself and tell us a little more about your career path so far?

My name is Stacia Gordon. I am an Assistant Professor at the University of Nevada, Reno (UNR). This fall marks the start of my fifth year at UNR. It is amazing how fast the time has gone by! As an assistant professor, I quickly learned that being successful means being a good juggler and having good time management, as there are so many things that require attendance on a day to day basis…..graduate students, undergraduate students, manuscripts, data reduction, teaching, proposals, service work, etc. Prior to UNR, I had many amazing mentors that helped teach me how to manage all of these tasks that are required of you as a professor. Before I moved to UNR, I spent a semester at the Lamont-Doherty Earth Observatory (LDEO) under the Marie Tharp Fellowship, working with Dr. Peter Kelemen. This was an excellent opportunity to collaborate with a great scientist and meet and interact with many other scientists through the numerous seminars that occur every week at LDEO. LDEO also has the most well-organized intramural sports activities of any Earth Science department. Thus, I thoroughly enjoyed taking a break from science to go play soccer during the week.

I also had an excellent mentor during my postdoctoral research at the University of California-Santa Barbara, working with Dr. Brad Hacker. I think I spent nearly half of the postdoc away from UCSB, traveling for meetings, fieldwork, and lab work, but I learned a large amount of science and various writing tips for submitting a successful proposal from Brad. Brad also introduced me to many new collaborators (most notably Tim Little, Laura Wallace, and Susan Ellis). In addition, spending free time in Santa Barbara is not too shabby, with its lovely combination of ocean and mountains.

My real passion for understanding the mid- to lower-crust began during my dissertation work, while studying under Drs. Donna Whitney and Christian Teyssier at the University of Minnesota. I owe a tremendous amount of gratitude to Donna and Christian and am very happy that I continue to collaborate with them today. In addition, the STAMP (structure, tectonics and metamorphic petrology) group at the U always provided a support network of individuals in which to bounce ideas off of, ask questions, have a beer with, etc. Finally, my dissertation project also introduced me to Bob Miller and Sam Bowring. Both of whom I continue to collaborate with today, and they both had a great influence on my upbringing as a geoscientist. While it was extremely cold living during the winters in Minnesota, the Twin Cities and Pillsbury Hall (where the geology department is housed) were always warm, welcoming places.

 

During EGU 2014, you received a Division Outstanding Young Scientists Award for your work on integration of microstructural data with geochronology, metamorphic petrology, and geochemistry. Could you tell us a bit more about your research in this area?

I am very interested in understanding the thermal, chemical and rheologic changes that occur during orogenesis, and specifically understanding the interaction and timing among processes, such as metamorphism, deformation, and partial melting. I have been working on these processes in a variety of tectonic environments, from ultrahigh-pressure terranes (Papua New Guinea, the Western Gneiss Region of Norway) to regions where mid- to lower-crustal rocks are exhumed (North Cascades of Washington, eastern Bhutan in Bhutan). I use a combination of field and laboratory work, including various types of geochronology (high-spatial resolution techniques: ion microprobe and laser-ablation inductively coupled plasma mass spectrometry (ICPMS); and high-precision technique: thermal ionization mass spectrometry), ICPMS trace-element analyses, ion microprobe oxygen-isotope analyses, EMPA chemical analyses. These tools allow me to decipher the pressure-temperature-deformation-time path that the rocks underwent within these terranes. Knowing how and when the rocks were deforming and the maximum depths that the rocks reached allows geoscientists to better understand the processes that led to the burial and the exhumation of mid- to lower-crustal rocks. This also contributes to understanding how mountain belts grow and evolve through time, from when the crustal is thickening to when the mountain belt undergoes collapse and extends, falling apart.

 

What sparked your interest in tectonic processes and what inspired you to use the innovative approach, for which you’ve been recognised, to better understand mountain building and subduction?

This may sound a bit cliché but my interest in tectonic processes began as a child. I was raised in the mid-west of the United States, which has been heavily glaciated and is thus the topography is flat. My family would take vacations to the Western United States where I would see the Rocky Mountains and the Cordillera, both significant orogenic belts. As I child, I wondered why some areas were flat and others mountainous. I decided when I reached the University to take a geology class. After taking Geology 101, an introduction geology class, I specifically became interested in hard-rock geology. I found it fascinating that rocks of the mid- to lower-crust have reached high-enough temperatures to ductilely flow, and I was very interested in understanding how orogenic belts rest upon this very weak, ductilely flowing base. In addition, I was (and still am) fascinated that parts of the crust are taken, via subduction, to mantle depths and are brought back to the surface. My undergraduate research advisor was working on some of these high-pressure rocks exposed in Poland, and I was able to do a small project with him on these rocks. Thus, by the end of my undergraduate education, my interest in hard-rock geology was well developed.

Stacia in  Bhutan. (Credit: Stacia M. Gordon)

Stacia in Bhutan. (Credit: Stacia M. Gordon)

At the General Assembly in 2014 you gave an oral presentation about the findings of your research on the Western Gneiss Region, Norway. Could you tells more about the key findings you presented there?

I have been working in the Western Gneiss Region (WGR) since my postdoc. Brad Hacker introduced me to these incredible rocks, and since this time, Donna Whitney, Christian Teyssier, Haakon Fossen and I have been collaborating, with students, on various parts of the WGR. Within this terrane, it is divided into an ultrahigh-pressure portion (i.e., rocks that were exhumed from mantle depths) and a portion that appears to have also undergone high pressures but that also achieved high-temperature conditions. Within both of these portions of the WGR, there are mafic rocks that are hosted by migmatitic gneisses that underwent partial melting. We have been studying the partial melting history for the WGR because when melt is present, it will be very buoyant. This buoyancy may help exhume rocks from mantle depths. In addition, a small percentage of melt (~7%) will drastically decrease the strength of the rocks; therefore, the melt will play a significant role in how the mountain belt is deforming through time. I have dated numerous of the now crystallized melt bodies and have found that many of the dates that record the timing of melting overlap in time with when the mafic rocks were undergoing metamorphism in the mantle. Thus, this suggests and supports field and experimental evidence from other studies/investigators that partial melting began at mantle depths and may have triggered the switch from the mafic rocks residing in the mantle to being exhumed toward Earth’s surface.

In addition, as mentioned above, we have analysed samples from both portions of the WGR, and we find that the timing of the partial melting is consistent across the entire WGR. This represents a significant portion of the central-western coast of Norway shared the same melting history and thus implies that melting was ubiquitous at the end stages of this mountain building event and likely helped to drive the exhumation of these high-grade rocks back to the surface.

 

Generally speaking, what are the main challenges when trying to understand the processes that govern burial and exhumation of rocks?

Probably the hardest part about trying to understand these processes is being able to decipher the different parts of the burial and exhumation history. The laboratory tools that I use to understand the pressure-temperature-deformation-time path uses the chemistry of the minerals found in metamorphic rocks. The chemistry of these minerals can preserve a record of multiple thermal events that have occurred over time, and this allows geoscientists to understand both the burial and exhumation history. However, in some cases, the earlier history can become overprinted or erased so that it is difficult to know what happened prior to the exhumation history of the rocks. I would say this is one of the biggest challenges in understanding these challenging rocks.

Field work in Bhutan. (Credit: Stacia M. Gordon)

Field work in Bhutan. (Credit: Stacia M. Gordon)

 

During field work there are highs and lows, and as your research has taken you to some pretty interesting localities, (Bhutan, Norway, Papua New Guinea) no doubt you’ve had some memorable field work moments whilst at the same time overcoming some tough challenges. Can you tell us more about your field work highs and lows?

The overall high for pretty much all of the places I have worked (besides the rocks) is the scenery: all of these countries are beautiful places. Also, high in the list is the opportunity to meet with local people and see lots of different cultures. Many of these places (e.g., Papua New Guinea and Tajikistan) I would likely have not travelled to as a tourist so I have really enjoyed being able to go there for the geology. In particular, when traveling to countries as a geologist, you likely get off the beaten path very quickly and so I think it is a view of many places that a typical tourist does not see.

There are definitely challenges to working in a variety of these places. In many of the foreign localities, there is a significant communication barrier, where I don’t speak the local language, but we have found some locals who speak English to help with the field work. However, commonly, their English is weak so there is constantly miscommunication about what we want to do, which means that there are constantly evolving plans. This can be very frustrating as typically we want to target very specific rocks that are exposed in very specific geographic locations. It is not until we are in the country that we find out that it is not possible to get to a particular location, which after planning for a trip for multiple months before the field work, can be maddening.

Papua New Guinea (PNG) has definitely been one of the most amazing places to work but also the most frustrating. Most of the people are very kind, but there are also many that assume that as a foreigner from the United States that you have lots of money and are trying to exploit the locals in some way. Thus, we spent many a hours talking to people, explaining what we were doing and trying to get permission to work our way up rivers (where the rocks are exposed). In some cases, the locals would either flat out refuse our request to go up the river or would want a significant amount of money meaning that we would have to turn around and give up on a certain trek. On my two trips to PNG, however, we worked with some fantastic local guides that led us up the rivers. The rocks in the rivers were very slippery, and we would easily fall multiple times throughout the day. The local guides, however, would never slip, carried our heavy back packs, and did it all barefoot! They had the most incredible balance and were extremely savvy with using the local jungle to produce whatever they would need in that moment. For example, at one point, we came to a waterfall that we could not scale. Within 15 minutes, our guides had cut down trees, found vines to use as rope, and built us a ladder to go up and over the waterfall! There were multiple incidents like this that we foreigners would watch in awe!

Field work is definitely one of my favourite parts of the job. I don’t have to sit at a desk all day but instead, get to hike around beautiful mountains. Thus, there definitely many more highs than lows that I have found in all of the places I have worked.

Finally, what does the future hold for you in terms of your research and career plans?

I would like to continue working on some of my current research interests but look forward to developing new skills, investigating new research avenues, mentoring many new graduate students, and collaborating with many new individuals! What I have learned from being a Geoscientist thus far is that there are many questions still to be answered about Earth and that as one researches a topic or chats with a colleague, that new research ideas quickly form.

Imaggeo on Mondays: Iceberg at midnight

Standing on the vast expanse of gleaming white sea ice of the Atka Bay, Michael Bock took this stunning picture of an Antarctic iceberg. The days, during the Antarctic summer, are never ending. Despite capturing the image at midnight, Michael was treated to hazy sunlight.

Icebergs at midnight. Credit: Michael Bock (distributed via imaggeo.egu.eu)

Icebergs at midnight. Credit: Michael Bock (distributed via imaggeo.egu.eu)

“Clearly visible [in the iceberg] are the annual snow accumulation layers which illustrate how the ice archive works.; as you look down the icy face, the ice gets older,” explains Michael. As more snow accumulates on the surface of the glacier, the underlying layers of snow are compressed by the weight from above, hence layers become thinner with increasing depth. On the ice shelf or on the Antarctic plateau these accumulation layers can only be seen when digging a snow pit. The obvious limitation of this is that only a few meters can be excavated with spades, limiting the observations one can carry out. Instead, to gain information about what happens deep within the ice pack, drill cores are usually used. Long cores of the layers of ice can be extracted , providing useful data. “One can drill into the ice (typically on the Antarctic plateau on ice divides or domes) reaching down to bedrock, with the retrieved ice core revealing long records of climatic history,” adds Michael. Deep ice cores can be more than 3000 m long. Depending on e.g. annual mean temperature and accumulation rate the age and resolution of these archives can vary greatly. Whilst this iceberg cannot be studied directly due to hazards associated with working underneath it does “serve as a beautiful visualisation of what we are searching for in ice core science”, explains Michael.

By Laura Roberts Artal and Michael Bock.

If you pre-register for the 2015 General Assembly (Vienna, 12 – 17 April), you can take part in our annual photo competition! From 1 February up until 1 March, every participant pre-registered for the General Assembly can submit up three original photos and one moving image related to the Earth, planetary, and space sciences in competition for free registration to next year’s General Assembly!  These can include fantastic field photos, a stunning shot of your favourite thin section, what you’ve captured out on holiday or under the electron microscope – if it’s geoscientific, it fits the bill. Find out more about how to take part at http://imaggeo.egu.eu/photo-contest/information/.

The best of Imaggeo in 2014: in pictures.

From the rifting of the African continent, to mighty waterfalls in Slovenia, through to a bird’s eye view of the Glarus Thurst in the Alps, images from Imaggeo, the EGU’s open access geosciences image repository, they have given us some stunning views of the geoscience of Planet Earth and beyond. In this post we have curated some of our favourites, including header images from across our social media channels and Immageo on Mondays blog posts of 2014. Of course, these are only a few of the very special images we highlighted in 2014, but take a look at our image repository, Imaggeo, for many other spectacular geo-themed pictures, including the winning images of the 2014 Photo Contest. The competition will be running again this year, so if you’ve got a flare for photography or have managed to capture a unique field work moment, consider uploading your images to Imaggeo and entering the Photo Contest.

Kilimanjaro from Mount Meru Credit: Alexis Merlaud (distributed via imaggeo.egu.eu)

Kilimanjaro from Mount Meru Credit: Alexis Merlaud (distributed via imaggeo.egu.eu)

Plate tectonics in East Africa created Kilimajaro and have also played a role in early human evolution, by shaping the local landscape and the long-term climate, thus modifying the environment of our ancestors. East Africa is the area in the world where most of the hominid fossils have been discovered, including Homo sapiens – the oldest fossil record is 200,000 years old and started to move out from Africa 100,000 years ago!

Peričnik waterfall, an amazing sight in Slovenia’s Triglav National Park. (Credit: Cyril Mayaud, distributed by imaggeo.egu.eu)

Peričnik waterfall, an amazing sight in Slovenia’s Triglav National Park. (Credit: Cyril Mayaud, distributed by imaggeo.egu.eu)

The picture above shows the lower Peričnik waterfall during winter season. This cascade system is composed of two successive waterfalls that stretch some 16 metres (upper fall) and 52 metres (lower fall) high and is one of the most beautiful natural sights in the Triglav National Park (Slovenia). The cliff is located at the western rim of a U shaped valley and is composed of a very permeable conglomerate rock, which is made up of glacier material that accumulated at the rims of the valley back when the glacier retreated.

Black Rolling.  (Credit: Philippe Leloup via imaggeo.egu.eu)

Black Rolling. (Credit: Philippe Leloup via imaggeo.egu.eu)

Polished slab of a mylonitic level of the Ailao Shan Red River shear zone (SE Asia) with an anphibole-rich layer showing left-lateral rolling structure (total width ~20 cm).

Hessdalen sky & Aurora. (Credit: Bjørn Gitle Hauge distributed via imaggeo.egu.eu)

Hessdalen sky & Aurora. (Credit: Bjørn Gitle Hauge distributed via imaggeo.egu.eu)

The night sky over Hessdalen Valley. Together with the radar an all-sky Nikon D700 camera monitors the whole night sky, covering the same area/view as the radar. The camera is equipped with an 8 mm fisheye lens computer controlled by Nikons Camera Control pro2 software, shooting simultaneous pictures with 30 seconds of shutter opening.

Men and children drawing water for irrigation during a sandstorm. (Credit: Velio Coviello via imaggeo.egu.eu)

Men and children drawing water for irrigation during a sandstorm. (Credit: Velio Coviello via imaggeo.egu.eu)

One of the winning images of the EGU 2014 Photo Contest, sheds light on the problems associated with conserving soils and water in Western Africa.

Desert fires feeding a convective cloud system over Mono Lake, California. (Credit: Gabriele Stiller distributed via imaggeo.egu.eu)

Desert fires feeding a convective cloud system over Mono Lake, California. (Credit: Gabriele Stiller distributed via imaggeo.egu.eu)

Wildfires frequently break out in the Californian summer. The grass is dry, the ground parched and a small spark can start a raging fire, but burning can begin even when water is about. When a blaze started beside Mono Lake, what got it going and what it may have started in the sky?

Moonlit glacier. (Credit: Marco Matteucci distributed via imaggeo.egu.eu)

Moonlit glacier. (Credit: Marco Matteucci distributed via imaggeo.egu.eu)

Early morning wake-up at the moonlit Alpine refuge Quintino Sella in the Felik glacier (3585 m). Mount Rosa ridge, Valle d’Aosta, Italy.

Air, Fire, Earth and Water. (Credit: Sabrina Matzger via imaggeo.egu.eu)

Air, Fire, Earth and Water. (Credit: Sabrina Matzger via imaggeo.egu.eu)

In the summer of 2001, southern Iceland, including the Reykjanes peninsula, was struck by a series of earthquakes, the largest of which was magnitude 6.6. Following the earthquakes, the water levels in Lake Kleifarvatn began to drop; by 2001 the water level had diminished by 4m. A fissure, approximately 400m long and 30cm wide, observed in the vicinity of the lake, was seen to disappear below its waters. It is thought the fissure is responsible for the draining of the lake between 2000 and 2001.

Glarus Alps. (Credit: Kurt Stüwe, via imaggeo.egu.eu

Glarus Alps. (Credit: Kurt Stüwe, via imaggeo.egu.eu)

Undoubtedly, the Alps are one of the best studied mountain ranges in the world. Appreciating their immense beauty and geological wealth can be difficult from the ground, given their vast scale and the inaccessibility of some of their more challenging peaks. Kurt Stüwe, along with alpine photographer Ruedi Homberger, set about changing this by undertaking the ambitious task of photographing the length of the Alps, from Nice to Vienna, in a small aircraft. The result is a compilation of stunning photographs that capture the magnificence of the Alps and contribute to a better understanding of their geological history.

Choosing amongst the 12 beautiful header images we’ve had this year was not easy! Here we highlight three; but in truth, they are all worthy of mention!

Morning Voyage. (Credit: Sierra Pope distributed via imaggeo.egu.eu)

Morning Voyage, the April 2014 header image. (Credit: Sierra Pope distributed via imaggeo.egu.eu)

Parque Nacional de Timanfaya – Montañas del Fuego, Lanzarote. Header image of September 2014. (Credit: Frederik Tack distributed via imaggeo.egu.eu)

Parque Nacional de Timanfaya – Montañas del Fuego, Lanzarote. Header image of September 2014. (Credit: Frederik Tack distributed via imaggeo.egu.eu)

Mount Moran. Credit: Josep Miquel Ubalde Bauló distributed via imaggeo.egu.eu)

Mount Moran, October 2014. Credit: Josep Miquel Ubalde Bauló distributed via imaggeo.egu.eu)

Mount Moran (12,605 feet (3,842 m)) is a mountain in Grand Teton National Park of western Wyoming, USA. Mount Moran dominates the northern section of the Teton Range rising 6,000 feet (1,800 m) above Jackson Lake.[4] Several active glaciers exist on the mountain with Skillet Glacier plainly visible on the monolithic east face. Like the Middle Teton in the same range, Mount Moran’s face is marked by a distinctive basalt intrusion known as the Black Dike.

As these highlights show, 2014 has spoilt us with an incredible set of images! We look forward to more in 2015. Best wishes from EGU for the new year!

 

If you pre-register for the 2015 General Assembly (Vienna, 12 – 17 April), you can take part in our annual photo competition! From 1 February up until 1 March, every participant pre-registered for the General Assembly can submit up three original photos and one moving image related to the Earth, planetary, and space sciences in competition for free registration to next year’s General Assembly!  These can include fantastic field photos, a stunning shot of your favourite thin section, what you’ve captured out on holiday or under the electron microscope – if it’s geoscientific, it fits the bill. Find out more about how to take part at http://imaggeo.egu.eu/photo-contest/information/.

Imaggeo on Mondays: Lusi from the sky with drones

Lusi from the sky with drones. Credit: Giovanni Romeo, Adriano Mazzini and Giuseppe Di Stefano. (distributed via imaggeo.egu.eu)

Lusi from the sky with drones. Credit: Giovanni Romeo, Adriano Mazzini and Giuseppe Di Stefano. (distributed via imaggeo.egu.eu)

The picture shows a spectacular aerial view of a sunset over the Lusi mud eruption in East Java, Indonesia. Here thousands of cubic meters of mud, are spewed out every day from a 100 m sized central crater. Since the initial eruption of the volcano in 2006, following a 6.3 M earthquake, a surface of about 7 km2 has been covered by boiling mud, which has buried more than 12 villages and resulted in the displacement of 40,000 people.

Monitoring Lusi is part of multidisciplinary project called Lusi Lab, which focuses on the study of the behaviour of this incredible mud eruption. Many unsolved questions remain: What lies beneath Lusi? Research focuses on trying to ascertain what triggers the mud eruptions. One key question is whether Lusi is truly a mud volcano, or is it connected to a hydrothermal system linked to the nearby Arjuno Welirang volcanic complex? Lusi erupts mud, water, gas and clasts in pulses and scientists do not fully understand how the intermittent activity is linked to the seismic activity of the neighbouring volcanic complex. For the purposes of hazard and risk management, much speculation has focused on how long is the activity at Lusi is likely to last.

In an attempt to shed light on some of these questions the Lusi Lab team continually collect water and gas samples from the volcano, as well as assessing the seismic activity in the region ( including the neighbouring volcanic arc) through the deployment of a network of seismometers. This data gathering effort is further supported by a UAV prototype: The Lusi drone (assembled and equipped by INGV, Rome). The drone is able to access extreme environments and can provide photogrammetric and thermal images, gas and mud sampling and contact temperature measurements. A permanently installed Gopro Hero3 camera provides a continuous recording over the mud flows during flights, including this week’s Imaggeo on Mondays image.  Gas and water samples collected from the crater site revealed that Lusi is part of a Sedimentary Hosted Geothermal System (SHGT) that connects Lusi with the neighbouring Arjuno Welirang volcanic complex that can be seen in the background of the picture. The eruption site is continuously fed by new surges of geothermal fluids released from the volcano in particular after frequent seismic events occurring in the subduction zone in southern Java.

By Laura Roberts Artal and Giovanni Romeo 

To learn more about Lusi take a look at this paper:

Mazzini, A., Etiope, G., and Svensen, H. (2012), A new hydrothermal scenario for the 2006 Lusi eruption, Indonesia. Insights from gas geochemistry: Earth and Planetary Science Letters, 317-318. 0, 305-318.

If you pre-register for the 2015 General Assembly (Vienna, 12 – 17 April), you can take part in our annual photo competition! From 1 February up until 1 March, every participant pre-registered for the General Assembly can submit up three original photos and one moving image related to the Earth, planetary, and space sciences in competition for free registration to next year’s General Assembly!  These can include fantastic field photos, a stunning shot of your favourite thin section, what you’ve captured out on holiday or under the electron microscope – if it’s geoscientific, it fits the bill. Find out more about how to take part at http://imaggeo.egu.eu/photo-contest/information/.

Follow

Get every new post on this blog delivered to your Inbox.

Join other followers: