Laura Roberts-Artal

Laura Roberts Artal is the Communications Officer at the European Geosciences Union. She is responsible for the management of the Union's social media presence and the EGU blogs, where she writes regularly for the EGU's official blog, GeoLog. She is also the point of contact for early career scientists (ECS) at the EGU Office. Laura has a PhD in palaeomagnetism from the University of Liverpool. Laura tweets at @LauRob85.

June GeoRoundUp: the best of the Earth sciences from around the web

June GeoRoundUp: the best of the Earth sciences from around the web

Drawing inspiration from popular stories on our social media channels, as well as unique and quirky research news, this monthly column aims to bring you the best of the Earth and planetary sciences from around the web.

Major Story

With June being the month when the world’s oceans are celebrated with World Ocean Day (8th June) and the month when the UN’s Ocean Conference took place, it seemed apt to dedicate our major story to this precious, diverse and remote landscape.

In fact, so remote and inaccessible are vast swathes of our oceans, that 95% of them are unseen (or unvisited) by human eyes. Despite their inaccessibility, humans are hugely reliant on the oceans.  According to The World Bank, the livelihoods of approximately 10 to 12% of the global population depends on healthy oceans and more than 90%of those employed by capture fisheries are working in small-scale operations in developing countries. Not only that, but the oceans trap vast amounts of heat from the atmosphere, limiting global temperature rise.

Yet we take this valuable and beautiful resource for granted.

As greenhouse gas emissions rise, the oceans must absorb more and more heat. The ocean is warmer today than it has been since recordkeeping began in 1880. Over the past two decades this has resulted in a significant change in the composition of the upper layer of water in our oceans. Research published this month confirms that ocean temperatures are rising at an alarming rate, with dire consequences.

Corals are highly sensitive to changes in ocean temperatures. The 2015 to 2016 El Niño was particularly powerful. As its effects faded, ocean temperatures in the Pacific, Atlantic and Indian oceans remained high, meaning 70 percent of corals were exposed to conditions that can cause bleaching. Almost all of the 29 coral reefs on the U.N. World Heritage list have now been damaged by bleaching.

This month, the National Oceanic and Atmospheric Administration (NOAA) declared that bleaching was subsiding for the first time in three years. Some of the affected corals are expected to take 10 to 15 years to recover, in stress-free conditions. But as global and ocean temperatures continue to rise, corals are being pushed closer to their limits.

Warmer ocean temperatures are also causing fish to travel to cooler waters, affecting the livelihoods of fishermen who depend on their daily catch to keep families afloat and changing marine ecosystems forever. And early this month, millions of sea-pickles – a mysterious warm water loving sea creature- washed up along the western coast of the U.S, from Oregon to Alaska. Though scientists aren’t quite sure what caused the bloom, speculation is focused on warming water temperatures.

It is not only warming waters which are threatening the world’s oceans. Our thirst for convenience means a million plastic bottles are bought around the world every minute. Campaigners believe that the environmental crisis brought about by the demand for disposable plastic products will soon rival climate change.

In 2015 researchers estimated that 5-13 million tonnes of plastics flow into the world’s oceans annually, much coming from developing Asian nations where waste management practices are poor and the culture for recycling is limited. To tackle the problem, China, Thailand, Indonesia and the Philippines vouched to try and keep more plastics out of ocean waters. And, with a plastic bottle taking up to 450 years to break down completely, what happens to it if you drop it in the ocean? Some of it, will likely find it’s way to the Arctic. Indeed, recent research suggests that there are roughly 300 billion pieces of floating plastic in the polar ocean alone.

A bottle dropped in the water off the coast of China is likely be carried eastward by the north Pacific gyre and end up a few hundred miles off the coast of the US. Photograph: Graphic. Credit: If you drop plastic in the ocean, where does it end up? The Guardian. Original Source: Plastic Adrift by oceanographer Erik van Sebille. Click to run.

And it’s not only the ocean waters that are feeling the heat. As the demand for resources increases, the need to find them does too. The sea floor is a treasure trove of mineral and geological resources, but deep-sea mining is not without environmental concerns. Despite the ethical unease, nations are rushing to buy up swathes of the ocean floor to ensure their right to mine them in the future. But to realise these deep-water mining dreams, advanced technological solutions are needed, such as the remote-controlled robots Nautilus Minerals will use to exploit the Bismarck Sea, off the coast of Papua New Guinea.

What you might have missed

Lightning reportedly ignited a deadly wildfire in Portugal, seen here by ESA’s Proba-V satellite on 18 June.

“On June 17, 2017, lightning reportedly ignited a deadly wildfire that spread across the mountainous areas of Pedrógão Grande—a municipality in central Portugal located about 160 kilometers (100 miles) northeast of Lisbon”, reported NASA – National Aeronautics and Space Administration. The death toll stands at 62 people (as reported by BBC News). The fires were seen from space by satellites of both NASA and ESA – European Space Agency satellites.

Large wildfires are also becoming increasing common and severe in boreal forests around the world. Natural-color images captured by NASA satellites on June 23rd, shows wildfires raging near Lake Baikal and the Angara River in Siberia. At the same time, a new study has found a link between lightning storms and boreal wildfires, with lightning strikes thought to be behind massive fire years in Alaska and northern Canada. This infographic further explores the link between wildfires triggered both by lightning and human activities.

Meanwhile, in the world’s southernmost continent the crack on the Larsen C ice-shelf continues its inexorable journey across the ice. The rift is set to create on of the largest iceberg ever recorded. Now plunged in the darkness of the Antarctic winter, obtaining images of the crack’s progress is becoming a little tricker. NASA used the Thermal Infrared Sensor (TIRS) on Landsat 8 to capture a false-color image of the crack. The new data, which shows an acceleration of the speed at which the crack is advancing, has lead scientists to believe that calving of the iceberg to the Weddell Sea is imminent.

Links we liked

The EGU story

This month saw the launch of two new division blogs over on the EGU Blogs: The Solar-Terrestrial Sciences and the Geodynamics Division Blogs. The EGU scientific divisions blogs share division-specific news, events, and activities, as well as updates on the latest research in their field.

And don’t forget! To stay abreast of all the EGU’s events and activities, from highlighting papers published in our open access journals to providing news relating to EGU’s scientific divisions and meetings, including the General Assembly, subscribe to receive our monthly newsletter.

Imaggeo on Mondays: Breath from the underground

Imaggeo on Mondays: Breath from the underground

The heat seeping from the geothermal area which is part of the Krafla volcanic system in Iceland, ‘powers’ the steaming vent at Hverir (Hverarönd). The area is well known for its mud pots and sulphuric gas fumaroles, complete with pungent eggy smell.

Some of the vents are in fact boreholes drilled in the 50’s for sulphur exploration which have been turned into fumaroles, the steam is a result of a steam zone above boiling groundwater. High temperature geothermal areas are a byproduct of Iceand’s volcanic setting and the energy released can be used to power homes and infrastructure. Indeed, geothermal power facilities currently generate 25% of the country’s total electricity production. You can read all about that in an Imaggeo on Mondays we published a couple of months ago.

Imaggeo is the EGU’s online open access geosciences image repository. All geoscientists (and others) can submit their photographs and videos to this repository and, since it is open access, these images can be used for free by scientists for their presentations or publications, by educators and the general public, and some images can even be used freely for commercial purposes. Photographers also retain full rights of use, as Imaggeo images are licensed and distributed by the EGU under a Creative Commons licence. Submit your photos at

GeoTalk: The life and death of an ocean – is the Atlantic Ocean on its way to closing?

GeoTalk: The life and death of an ocean – is the Atlantic Ocean on its way to closing?

Geotalk is a regular feature highlighting early career researchers and their work. Following the EGU General Assembly, we spoke to João Duarte, the winner of a 2017 Arne Richter Award for Outstanding Early Career Scientists.  João is a pioneer in his field. He has innovatively combined tectonic, marine geology and analogue modelling techniques to further our understanding of subduction initiation and wrench tectonics. Not only that, he is a keen science communicator who believes in fostering the next generation of Earth scientists.

Thank you for talking to us today! Could you introduce yourself and tell us a little more about your career path so far?

I am a geologist by training. I gained my undergraduate degree from the University of Lisbon and I stayed there to research geodynamics as part of my PhD which I finished in 2012. As I was coming to the end of writing up my thesis I moved to Monash University, in 2011, to start a postdoc.

Yes! I worked on my PhD and a postdoc at the same time, but I was only really finishing up. My thesis was almost ready. When I moved to Australia the defence was outstanding, but otherwise I was almost done.

My PhD thesis focused on the reactivation of the SW Iberian margin. It was the very first time I came across the problem of subduction initiation and that has become a big focus of my career to date.

My postdoc came to an end in 2015 and I moved back to Portugal and took up a position at the Faculty of Sciences of the University of Lisbon where I’ve started building my own research group [more on that later on in the interview].

I’ve always been passionate about science. It started when I was a kid, I’ve always been interested in popular science. My favourite writers are Isaac Asimov and Carl Sagan.

During EGU 2017, you received an Arne Richter Award for Outstanding Young Scientists for your work on subduction initiation and wrench tectonics. What brought you to study this particular field?

On the morning of the 1st of November 1755, All Saints Day, when many Portuguese citizens found themselves at church attending mass, one of the most powerful earthquakes ever document struck off the coast of Portugal, close to Lisbon.

It was gigantic, with an estimated magnitude (Mw) 8.5 or 9. It triggered three tsunami waves which travelled up the Tagus River, flooding Lisbon harbour and the downtown area. The waves reached the United Kingdom and spread across the Atlantic towards North America too.

The combined death toll as a result of the ground shaking, tsunamis and associated fires may have exceeded 100,000 people.

The event happened during the Enlightenment period, so many philosophers and visionaries rushed to try and understand the earthquake. Their information gathering efforts are really the beginning of modern seismology.

But the 1755 event wasn’t an isolated one. There was another powerful earthquake off the coast of Portugal 200 years later, in 1969. It registered a magnitude (Mw) of 7.8.

This earthquake coincided with the development of the theory of plate tectonics. While Wegener proposed the idea of continental drift in 1912, it wasn’t until the mid-1960s that the theory really took hold.

People knew by then that the margins of the plates along the Pacific were active – the area is famous for its powerful earthquakes, explosive volcanoes and high mountain ranges. Both the 2004 Indian Ocean and 2011 Thoku (Japan) earthquakes and tsunamis were triggered at active margins.

But the margins of the Atlantic are passive [where the plates are not actively colliding with or sinking below one another, so tectonic activity – such as earthquakes and volcanoes – is minimal]. So, it was really strange that we could have such high magnitude quakes around Portugal.

A large European project was put together to produce a map of the SW Iberian margin and the Holy Grail would be to locate the source of the 1755 quake. The core of my PhD was to compile all the ocean floor and sub-seafloor data and produce a new map of the main tectonic structures of the margin.

Tectonic map of the SW Iberia margin. In grey the deformation front of the GibraltarArc, in white the strike-slip fault associated with the Azores-Gibraltar fracture zone, and in yellow the new set of thrust faults that mark the reactivation of the margin (Duarte et al., 2013, Geology)

What did the new map reveal?

Already in the 70s and later in the late 90s, researchers started to wonder if this margin could be in a transition between passive to active: could an old passive margin be reactivated? If so, could this mean a new subduction zone is starting somewhere offshore Portugal?

The processes which lead a passive margin to become active were unclear and controversial. All the places where subduction is starting are linked to locations where plates are known to be converging already.

The occurrence of the high magnitude earthquakes, along with the fact that there is structural evidence (folding, faulting and independent tectonic blocks) of a subduction zone in the western Mediterranean (the Gibraltar Arc) suggested that it was possible that a new subduction system was forming in the SW Iberian margin.

The new ocean floor and seismic data revealed three active tectonic systems, which were included in the map. The map shows the margin is being reactivated and allowed identifying the mechanism by which it could happen: ‘Subduction invasion’ or ‘subduction infection’ (a term first introduced by Mueller and Phillips, 1991).

I’d like to stress though, that the map and its findings are the culmination of many years of work and ideas, by many people. My work simply connected all the dots to try to build a bigger picture.

So, what does ‘subduction infection and invasion’ involve?

Subduction zones, probably, don’t start spontaneously, but rather they are induced from locations where another subduction system (or an external force, such as  a collisional belt) already exists.

For example, if a narrow bridge of land connects an ocean (as is often the case) where subduction is active to one where the margins are passive. The active subduction zones from one can invade the passive margins and activate them. You see this in the other side of the Atlantic (where subduction zones have migrated from the Pacific), in the Scotia and the Lesser Antilles arcs.

We also know this has happened in past. But Iberia might be the only place where it is happening currently. And that is fascinating!

Earlier on you said that the ‘Holy Grail’ moment of the map would be if you could find the source of the 1755 earthquake. Did you?

No. Not entirely. The source of the earthquake is probably a complex fault, where multiple faults ruptured to generate the quake, not just one (as is commonly thought).

In your medal lecture at the General Assembly in 2017 (and in your papers) you allude to the fact that the reactivation of the SW Iberian margin has even bigger implications. You suggest that staring of subduction process in the arcs of the Atlantic could ultimately lead to the ocean closing altogether?

The Wilson cycle defines the lifecycle of an ocean: first it opens and spreads, then its passive margins founder and new subduction zones develop; finally, it consumes itself and closes.

So, the question is: if subduction zones are starting in the Atlantic will it eventually close?

There are a few things to consider:

The ocean floor age is limited. It seems that it has to start to disappear after about ~ 200 million years (the oldest oceanic lithosphere is ~ 270 million years old). Passive margins in the Earth history also had life spans of the order of ~ 200 Ma, suggesting that this may not be a coincidence. I suspect that there is a dynamic reason for this…

Most researchers agree that the next major oceanic basin which is set to close is the Pacific. The Americas (to the east) are moving towards East Asia and Australia at a rate of 3-4 cm yr-1, so it should close in roughly 300 million years.

We also know that the Atlantic has been opening for 200 million years already. If you believe that the closing of the Pacific indicates that continental masses have been slowly gliding towards each other to form the next supercontinent (a theory know as extroversion); then the Atlantic has to continue to open until the Pacific closes. This would mean that ocean floor rocks in the Atlantic would be very old (up to 500 million years old!) – highly unlikely given the oldest existing oceanic rocks are 270 million years old.

The map I made during my PhD showed that the Atlantic oceanic lithosphere is already starting to break-up and is weakened.

All the pieces combined, I think the most likely outcome is that the Pacific and the Atlantic will close at the same time. This scenario would require other oceanic basins to form, and that’s possible in the existing Indian Ocean and/or the Southern Ocean. Present-day continents would be brought together to form a new supercontinent, which we called Aurica.

Aurica – the hypothetical future supercontinent formed as the result of the simultaneous closure of the Atlantic and the Pacific oceans (Duarte et al., 2016, Geological Magazine).

If you take into consideration present-day plate velocities the supercontinent could be fully formed in approximately 300 million years’ time. We expect Aurica to be centred slightly north of the equator, with Australia and the Americas forming the core of the landmass.

With those findings, it is obvious why subduction has been a recurring theme in your career as a researcher. But what sparked your initial interest in geology and then tectonics in general?

I spent a lot of time outdoors as a kid. I was always curious and fascinated by the outdoor world. I joined the scouts when I was eight. We used to camp and explore caves by candle-light!

When I was 14 I took up speleology; there are lots of caves in the region I grew up in, in Portugal. As amateurs, my speleology group participated in archaeological and palaeontological work. The rocks in the region are mainly of Jurassic age and contain lots of fossils (including some really nice dinosaurs).

The outdoors became part of me.

I knew early on that I didn’t want a boaring job with lots of routine. I wanted a career that would allow me to discover new things.

Geology was the most obvious choice when picking a degree. I felt it offered me a great way to stay in touch with the other sciences too – physics via geophysics and biology through palaeontology.

In my 2nd year at university, I was invited to help in an analogue lab looking at problems in structural geology and geodynamics.

I was always attracted to the bigger picture. Plate tectonics unifies everything. I like how by studying tectonics you can link a lot of little things and then bring them together to look at the bigger picture.

What advice do you have for early career scientists?

When I found out about the award I was shocked because I wasn’t expecting it at all.

I always felt I wasn’t doing enough [in terms of research output]. I think that early career scientists are being pushed to limits that are unreasonable; the competition is intense. It’s not always obvious, but there is a lot of pressure to publish. But there are also a lot of very good people whose publication record doesn’t necessarily reflect their skill as a scientist.

The award made me realise I was probably doing enough!

Moving to Australia was KEY. Moving and creating collaborations with different people will make you unique. You don’t want to stay in the same institution. [By doing so] you become very linear. There are a number of schemes available (like Marie Curie and Erasmus) which allow you to move. Use these to the fullest. Moving allows you to see problems from different perspectives. And you will become more unique as a scientist.

There a lot of bright young scientist – never have we had so many – we are all unique, but you have to find the uniqueness in yourself. Most of all have fun. Do science for the right reasons and remember that people still recognise honest hard work (the award showed me that).

Interview by Laura Roberts, EGU Communications Officer.


Duarte, J. C., Rosas, F, M., Terrinha, P., Schellart W, P., Boutelier, D., Gutscher, M-A., and Ribeiro, A.,: Are subduction zones invading the Atlantic? Evidence from the southwest Iberia margin, GEOLOGY, 41, 8, 839–842, https://

Duarte, J. C., and Schellart W, P.,: Plate Boundaries and Natural Hazards, Geophysical Monograph, 219 (First Edition), ISBN: 978-1-119-05397–2, 2016

Duarte, J., Schellart, W., & Rosas, F.,: The future of Earth’s oceans: Consequences of subduction initiation in the Atlantic and implications for supercontinent formation, Geological Magazine, 1–14,, 2016.

Purdy, G.M.,: The Eastern End of the Azores-Gibraltar Plate Boundary, GJI, 43, 3, 973–1000,, 1975

Mueller, S., Phillips, R, J.,: On The initiation of subduction, JGR, 96, B1, 651-665,, 1991

Ribeiro, A., Cabral, J., Baptista, R., and Matias, L.,: Stress pattern in Portugal mainland and the adjacent Atlantic region, West Iberia, Tectonics, 15, 3, 641–659,, 1996






Imaggeo on Mondays: Airplane views of the Alps

Imaggeo on Mondays: Airplane views of the Alps

The forward scattering of sunlight, which is caused by a large number of aerosol particles (moist haze) in Alpine valleys, gives the mountain massifs a rather plastic appearance.

The hazy area in the foreground lies above the Koenigsee lake; behind it the Watzmann, Hochkalter, Loferer Steinberge and Wilder Kaiser massifs loom up behind one other to the right of the centre line. Behind them is the wide Inn valley, which extends right across the picture. In the far distance in the middle of the picture, the Wetterstein massif projects upwards with the Zugspitze mountain as its highest peak.

The left side shows Steinernes Meer, Leoganger Steinberge and a sequence of at least 10 mountain chains that extend as far as Kellerjoch, which is in front of the whitish area of haze above Innsbruck. The noon sounding from Munich showed that relative humidity exceeded 75% up to 1,400 m above sea level, with distinctly lower values above (less than 20 %).

The view is from an aircraft window approximately 10 km to the east of the Salzach valley.

Description by Hans Volkert, as published previously on


Get every new post on this blog delivered to your Inbox.

Join other followers: