Cryospheric Sciences


Image of the Week – The true size of Greenland

Fig. 1: Greenland is slightly bigger than  Austria, Belgium, Denmark, France, Germany, Ireland, Italy, Poland, Portugal, the Netherlands and the United Kingdom together [Credit: The True Size].

Greenland is a critical part of the world, which is regularly covered on this blog, because it hosts the second largest ice body on Earth – the Greenland Ice Sheet. This ice sheet, along with its small peripheral ice caps, contributes by 43% to current sea-level rise.

However, despite being the world’s largest island Greenland, appears disproportionately large on the most common world maps (Fig. 2). Our new image of the week takes a look at the true size of Greenland…

Fig. 2: World (Mercator) map used by many online mapping applications. [Credit: D. Strebe/Wikimedia commons]

How big is Greenland?

We could simply tell you that Greenland stretches over ~2 million km². For most people, this figure would however not speak for itself.   Luckily, The True Size is a web application that comes to our rescue by enabling us to compare the true size of all the countries in the world.

As we can see in Fig. 1, Greenland is in fact only slightly bigger than Austria, Belgium, Denmark, France, Germany, Ireland, Italy, Poland, Portugal, the Netherlands and the United Kingdom together.

Similarly, Greenland is also (Fig. 3):

  • roughly the size of the Democratic Republic of Congo

  • could fit 1.4 times in India

  • 4.2 times smaller than than the United States

  • could fit 3.5 times in Australia

Fig. 3: Greenland vs Democratic Republic of Congo, Australia, the United States and India. [Credit: The True Size]

 Greenland is therefore big but not as big as what is suggested by the most common maps (Fig. 2). As a result, one can therefore wonder why the most popular world maps distort the size of the countries.

All maps are wrong but some are useful

To map the world, cartographers must project a curved surface on a flat piece of paper. There are different approaches to do so but all distort the earth surface in some ways. For instance, conformal projections preserve angles and shapes but change the size of the countries, whereas equal-area projections conserve the sizes but distort the shapes. As a result, a map projection that suits all purposes does not exist. Instead, the choice of the projection will depend on the use of the map.

Fig. 4: Mercator cylindrical projection [Credit: National Atlas of the United States]

The most popular projection, the Mercator projection (Fig. 2),  is used by many online mapping applications (e.g. google maps, OpenStreetMap, etc.). In Mercator maps, the Earth’s surface is projected on a cylinder that surrounds the globe (Fig. 4). The cylinder is then unrolled to produce a flat map that preserves the shapes of landmasses but tends to stretch countries towards the poles. This is why the size of Greenland is exaggerated in many world maps.

Why does google map use the Mercator projection then?

If Google Maps and other web mapping services rely on the Mercator projection, it is not to make countries at high latitudes appear bigger, but, because those tools are mainly intended to be used at local scales. The fact that the Mercator projection preserves angles and shapes therefore ensures minimal distortions at the city-level: two perpendicular streets will always appear perpendicular in Google Maps. This is not necessarily the case at high latitudes with projections that preserves areas (as can be seen here).

Interested in this topic? Then, you might enjoy this video !

Image of the Week: Petermann Glacier

Figure 1: Satellite images showing the front of Petermann glacier from spring to autumn 2016 [Credit: LandSAT 8 (NASA) and L. Dyke]

Our image of the week shows the area around the calving front of Petermann Glacier through the spring, summer, and autumn of 2016. Petermann Glacier, in northern Greenland, is one of the largest glaciers of the Greenland Ice Sheet. It terminates in the huge Petermann Fjord, more than 10 km wide, surrounded by 1000 m cliffs and plunging to more than 1100 m below sea level at its deepest point. In 2010 and 2012, the glacier caught the world’s attention with two large events, which caused the glacier to retreat to a historically unprecedented position.

In Fig. 1 we see the changes happening through the season on Petermann glacier – and they are huge. The animated map highlights many different processes. As areas emerge from the Polar night at the start of spring, the shadows quickly shorten and the light levels become noticeably higher.  This is followed by the melting of the snow, first on south-facing slopes, and eventually to on the high-elevation areas in the mountains. As the sun returns, meltwater starts forming on the surface of the glacier, this is visible as vast turquoise lakes. Finally, the sea ice in the fjord succumbs to the seasonal warming of the ocean and atmosphere, it thins, and then completely disintegrates at around day 205.

The change in the glacier is perhaps the most interesting phenomenon. It is possible to observe the glacier flowing and advancing into the fjord. In addition, several large rifts near the front open through the course of the year. These will eventually spread across the front of the glacier and a new, huge iceberg will be born. These rifts are being closely monitored, and it is likely that when the iceberg calves it will bring cause Petermann Glacier to retreat to a new historical minimum.

The image above is an example of a new type of map, it takes cartography into the 4th dimension—time. Technological advances have only recently made it possible to create a map like this; with the launch of Landsat 8 and Sentinel-2 it is now possible to receive regular, high-resolution, and free satellite images of high latitude areas. These data have been projected onto a new, high quality digital elevation model (Howat et al., 2013) to create this map.


Further Reading

Howat, I. M., Negrete, A., and Smith, B. E. (2014). The Greenland Ice Mapping Project (GIMP) land classification and surface elevation datasetsThe Cryosphere8 (1): 1509–1518

Edited by Nanna B. Karlsson

Laurence Dyke is a postdoctoral researcher at The Geological Survey of Denmark and Greenland (GEUS) in Copenhagen (DK). His work is primarily focussed on understanding the history of the Greenland Ice Sheet, from both marine and terrestrial perspectives. He works with marine sediment cores and surface exposure dating to investigate what triggered changes in glacier behaviour over the last 12 thousand years. Understanding the past is key to predicting the future! He tweets as @LaurenceDyke

Image of the Week – A new way to compute ice dynamic changes

Fig. 1: Map of ice velocity from the NASA MEaSUREs Program showing the region of Enderby Land in East Antarctica [Credit: Fig. 1 from Kallenberg et al. (2017) ].

Up to now, ice sheet mass changes due to ice dynamics have been computed from satellite observations that suffer from sparse coverage in time and space. A new method allows us to compute these changes on much wider temporal and spatial scales. But how does this method work? Let us discover the different steps by having a look at Enderby Land in East Antarctica, for which ice velocities are shown in our Image of the Week…

Mass balance of ice sheets

The mass balance of an ice sheet is the difference between the mass gain of ice, primarily through snowfall, and the mass loss of ice, primarily via meltwater runoff and ice dynamic processes (e.g. iceberg calving, melting below ice shelves). When the mass gain is equal to the mass loss, the ice sheet is in balance. However, if one exceeds the other, the ice sheet either gains or loses mass.

Measuring mass balance changes of ice sheets is crucial due to their potential contribution to sea level rise (see previous post). You can have a look at this nice review for further details about the recent changes in the mass balance of the two biggest ice sheets on Earth, i.e. Antarctica and Greenland.

Ice mass changes from snowfall and meltwater runoff (what we call ‘surface mass balance’ changes) are reasonably well simulated by regional climate models, which give good agreement with observations (see this study for Antarctica and this one for Greenland). Mass changes from ice dynamics are more complex to obtain. They are commonly estimated by combining ice velocity and ice thickness. Ice velocity is measured via satellite radar interferometry, while ice thickness is obtained thanks to airborne radar. Unfortunately, these measurements have sparse temporal and spatial coverage, especially in Antarctica, which makes the computation of mass changes from ice dynamics challenging.

A new method to estimate ice dynamic changes

Kallenberg et al. (2017) conducted a study focussing on Enderby Land in East Antarctica (see our Image of the Week) in which they use a novel approach to estimate ice dynamic changes. This region of Antarctica has experienced a slightly positive mass balance in past years, meaning that the ice sheet has slightly thickened in this region.

Kallenberg et al. (2017) first used satellite observations to compute the total changes in ice sheet mass. They took advantage of two high-technology datasets. The first one, “Gravity Recovery And Climate Experiment” (GRACE), measures changes in the Earth’s gravity field, from which ice mass changes can be derived. A summary explaining how GRACE works can be found in this previous post. The second satellite dataset, “Ice, Cloud, and land Elevation Satellite” (ICESat), measures changes in ice surface elevation, from which changes in ice mass can be computed by using ice density.

However, Kallenberg et al. (2017) were not interested in the total ice mass changes, as obtained from GRACE and ICESat satellites, but rather in ice dynamic changes. They subtracted two quantities from the total mass changes in order to obtain the remaining dynamic changes:

  1. Surface mass balance changes: changes from processes happening at the surface of the ice sheet (e.g. snow accumulation, meltwater runoff). These changes were obtained from model simulations using the Regional Atmospheric Climate Model (RACMO2), for which details can be found in this previous post.
  2. Glacial Isostatic Adjustment: changes in land topography due to ice loading and unloading. These changes were computed from Glacial Isostatic Adjustment models.

What does this study tell us?

The results of this study show that it is possible to compute changes in ice mass resulting from ice dynamics with higher spatial and temporal coverage than before, using a combination of satellite observations and models.

Also, the use of two different satellite datasets (GRACE and ICESat) shows that they agree quite well with each other in the region of Enderby Land (see Fig. 2). This means that using one or the other dataset does not make a big difference.

Finally, this new method also shows that differences between GRACE and ICESat reduce when using the newer version of RACMO2 for computing surface mass balance changes. This tells us that comparing results of ice dynamics from both satellites with different models is a good way to identify which models correctly simulate surface processes and which models do not.

Fig. 2: Ice dynamic changes (dH/dt, where H is ice thickness and t is time) computed from (a) GRACE and (b) ICESat and expressed in meters per year [Credit: Fig. 5 from Kallenberg et al. (2017) ].

Further reading

Edited by Clara Burgard and Emma Smith

David Docquier is a post-doctoral researcher at the Earth and Life Institute of Université catholique de Louvain (UCL) in Belgium. He works on the development of processed-based sea-ice metrics in order to improve the evaluation of global climate models (GCMs). His study is embedded within the EU Horizon 2020 PRIMAVERA project, which aims at developing a new generation of high-resolution GCMs to better represent the climate.

Image of the Week – Summer is fieldwork season at EastGRIP!

Image of the Week – Summer is fieldwork season at EastGRIP!

As the days get very long, summer is a popular season for conducting fieldwork at high latitudes. At the North East Greenland Ice Stream (NEGIS), the East Greenland Ice-core Project (EastGRIP) is ongoing. Several scientists are busy drilling an ice core through the ice sheet to the very bottom, in continuation to previous years (see here and here). This year, amongst others, several members from the European Research Council (ERC) supported synergy project ice2ice are taking part in the work at EastGRIP. Besides sleeping in the barracks that can be seen in our Image of the Week, the scientists enjoy the international and interdisciplinary setting and, of course, the work in a deep ice core drilling camp…

Life at the EastGRIP camp

In total, 22 people live in the camp (see Fig.2): 1 field leader, 5 ice core drillers, 4 ice core loggers, 3 people working with the physical properties of the ice, 2 are doing continuous water isotope analysis, 2 surface science scientists, 2 field assistants, and 1 mechanic, 1 electrical engineer and most important an excellent cook. We cover a variety of nationalities: British, Czech, Danish, French, German, Japanese, Korean, Norwegian, Russian and more. The crew changes every four weeks and the EastGRIP project aims to get as many young scientists (Master and PhD students) into camp as possible, so that it also works as a learning environment for new generations. In total, the number of people that have and will spent time at EastGRIP this season is almost 100, making it a buzzing science hub. This environment leads to extensive science discussions over the dinner table and therefore facilitates the interdisciplinary connections so vital in ice core science.

Fig.2: The current crew at EastGRIP dressed up for the Saturday party (tie and dress obligatory!) [Credit: EastGRIP diaries].

Science at the EastGRIP camp

The main aim of the EastGRIP project is to retrieve an ice core by drilling through the North East Greenland Ice Stream (NEGIS) up to a depth of 2550 m (!). Ice streams are responsible for draining a significant fraction of the ice from the Greenland Ice Sheet (see Fig. 3). We hope to gain new and fundamental information on ice stream dynamics from the project, thereby improving the understanding of how ice streams will contribute to future sea-level change. The EastGRIP project has many international partners and is managed by the Centre for Ice and Climate, Denmark with air support carried out by US ski-equipped Hercules aircraft managed through the US Office of Polar Programs, National Science Foundation.

Fig. 3: Ice velocities from RADARSAT synthetic aperture radar data are shown in color and illustrate the wedge of fast-flowing ice that begins right at the central ice divide and cuts through the ice sheet to feed into the ocean through three large ice streams (Nioghalvfjerds isstrømmen, Zachariae isbræ, and Storstrømmen). [Credit: EastGRIP, data from Joughin et al., 2010]

Currently, four Norwegian and Danish scientists from the ice2ice project have joined the EastGRIP project to conduct field work at the ice core drilling site. The ice2ice project focuses on how land ice and sea ice influence each other in past, present, and future. Thus, being at the EastGRIP site is a great opport

unity for us in ice2ice to learn more about how the fast-flowing ice stream in North East Greenland may influence the stability of the Greenland ice cap and to enjoy the collaborative spirit at an ice core drilling site.


This year’s fieldwork at EastGRIP started in May and will continue until August. We aim to make it through the brittle zone of the ice. This is a zone where the gas bubbles get enclosed in the ice crystals and thus the ice is, as the name indicates, more brittle than at other depths. Unfortunately for us, the brittle zone makes it very hard to retrieve the ice in a great quality. This is because of the pressure difference between the original depth of the ice and the surface, that causes the ice to fracture when it arrives at the surface. We are doing our very best to stabilize the core and several optimizations in terms of both drilling and processing of the ice core are being applied.

Fig. 4: Cross-section view of an ice core [Credit: Helle Astrid Kjær].

Still, a large part of the core can already be investigated (see Fig. 4) for water isotopes to get information about past climate. Also, ice crystals directions are being investigated through thin slices of the ice core to help better understanding the flow of the NEGIS. On top of the deep ice core, which is to be drilled to bedrock over the coming years, we are doing an extensive surface program to look at accumulation changes.

In the large white plains…

Despite all the fun science and people, when you are at EastGRIP for more than 4 weeks, you have a very similar landscape everyday and can miss seeing something else than just the great white. About a week ago, a falcon came by to remind us of the rest of the world (see Fig. 5). It flew off after a couple of days. We will follow its path to the greener parts of Greenland when we will soon fly down to Kangerlussuaq. Someone else will then take over our job at EastGRIP and enjoy the wonders of white…

Fig.5: Visit of a falcon [Credit: Helle Astrid Kjær].

Further reading

Edited by Clara Burgard

Helle Astrid Kjær is a postdoc at the Centre for Ice and Climate at the Niels Bohr Institute at University of Copenhagen. When she is not busy in the field drilling and logging ice cores, she spends most of her time in the lab retrieving the climate signal from ice cores. These include volcanic events, sea salts, dust with more by means of Continuous Flow Analaysis (CFA). Further she is hired to manage the ice2ice project.

Image of the Week – How geometry limits thinning in the interior of the Greenland Ice Sheet

Image of the Week –  How geometry limits thinning in the interior of the Greenland Ice Sheet

The Greenland ice sheet flows from the interior out to the margins, forming fast flowing, channelized rivers of ice that end in fjords along the coast. Glaciologists call these “outlet glaciers” and a large portion of the mass loss from the Greenland ice sheet is occurring because of changes to these glaciers. The end of the glacier that sits in the fjord is exposed to warm ocean water that can melt away at its face (a.k.a. its “terminus”) and force the glacier to retreat. As the glaciers retreat, they thin and this thinning can spread into the interior of the ice sheet along the glacier’s flow, causing glaciers to lose ice mass to the ocean as is shown in our Image of the Week. But how far inland can this thinning go?

Not all glaciers behave alike

NASA’s GRACE mission measures mass changes of the Earth and has been used to measure ice mass loss from the Greenland ice sheet (see Fig. 1a). The GRACE mission has been extremely valuable in showing us where the largest changes are occurring: around the edge of the ice sheet. To get a closer look, my colleagues and I use a technique called photogrammetry.

Using high-resolution satellite photos, we created digital elevation models of the present-day outlet glacier surfaces. The imagery was collected by the WorldView satellites and has a resolution of 50 cm per pixel! When we compared our present-day glacier surfaces with surfaces from 1985, with the help of an aerial photo survey of the ice sheet margin (Korsgaard et al., 2016), we found that glacier thinning was not very uniform in the West Greenland region (see our Image of the Week, Fig. 1b). Some glaciers thinned by over 150 meters at their termini but others remained stable and may have even thickened slightly! Another observation is that, of the glaciers that have thinned, some have thinned only 10 kilometers into the interior while others have thinned hundreds of kilometers inland (Felikson et al., 2017).

But atmospheric and ocean temperatures are changing on much larger scales – they can’t be the cause of these huge differences in thinning that we observe between glaciers. So what could be the cause of the differences in glacier behaviour? My colleagues and I used kinematic wave theory to help explain how each glacier’s unique shape (thickness and steepness) can control how far inland thinning can spread…

A kinematic wave of thinning

As a glacier’s terminus retreats, it thins and this thinning can spread upglacier, into the interior of the ice sheet, along the glacier’s flow. This spreading of thinning can be modeled as a diffusive kinematic wave (Nye, 1960). This means that the wave of thinning will diffuse in the upglacier direction while the flow of ice advects the thinning in the downglacier direction. An analogy for this process is the spreading of dye in a flowing stream. The dye will spread away from the source (diffusion) and it will also be transported downstream (advection) with the flow of water.

The relative rates of diffusion and advection are given by a non-dimensional value called the Peclet number. For glacier flow, the Peclet number is a function of the thickness of the ice and the surface slope of the ice. Where the ice is thick and flat, the Peclet number is low, and thinning will diffuse upglacier faster than it advects downglacier. Where the ice is thin and steep, the Peclet number is high, and thinning will advect downglacier faster than in diffuses upglacier.

Let’s take a look at an example, the Kangilerngata Sermia in West Greenland

Figure 2: Thinning along the centreline of Kangilerngata Sermia in West Greenland. (a) Glacier surface profile in 1985 (blue), present-day (red), and bed (black). (b) Dynamic thinning from 1985 to present along the profile with percent unit volume loss along this profile shown as colored line. (c) Peclet number along this profile calculated from the geometry in 1985 with Peclet number running maxima highlighted (red). [Credit: Denis Felikson]

There, dynamic thinning has spread from the terminus along the lowest 33 kilometers (see Fig. 2). At that location, the glacier flows over a bump in the bed, causing the ice to be thin and steep. The Peclet number is “high” in this location, meaning that any thinning here will advect downglacier faster than it can spread upglacier. Two important values are needed to further understand the relationship between volume loss and Peclet number. On the one hand, we compute the “percent unit volume loss”, which is the cumulative thinning from the terminus to each location normalized by the total cumulative thinning, to identify where most of the volume loss is taking place. On the other hand, we identify the “Peclet number running maxima” at the locations where the Peclet number is larger than all downglacier values. These locations are critical because if thinning has spread upglacier beyond a local maximum in the Peclet number, and accessed lower Peclet values, then thinning will continue to spread until it reaches a Peclet number that is “large enough” to prevent further spreading. But just how large does the Peclet number need to be to prevent thinning from spreading further upglacier?

Figure 3: (a) Percent unit volume loss against Peclet number running maximum for 12 thinning glaciers in West Greenland. (b) Distances from the termini along glacier flow where the Peclet number first crosses 3. Abbreviations represent glacier names [Credit: Denis Felikson]

If we now look at the percent unit volume loss versus Peclet number running maxima for not only one but twelve thinning glaciers in the region, we see a clear pattern: as the Peclet number increases, more of the volume loss is occurring downglacier (see Fig. 3). By calculating the medians of the glacier values, we find that 94% of unit volume loss has occurred downglacier of where the Peclet number first crosses three. All glaciers follow this pattern but, because of differences in glacier geometry, this threshold may be crossed very close to the glacier terminus or very far inland. This helps explaining the differences in glacier thinning that we’ve observed along the coast of West Greenland. Also, it shows that the Peclet number can be a useful tool in predicting changes for glaciers that have not yet retreated and thinned.

Further reading

Image of the Week – Antarctica’s Flowing Ice, Year by Year

Fig 1: Map series of annual ice sheet speed from Mouginot et al. (2017). Speeds range from 0 (purple) to 1000+ (dark brown) m/yr. [Credit: George Roth]

Today’s Image of the Week shows annual ice flow velocity mosaics at 1km resolution from 2005 to 2016 for the Antarctic ice sheet. These mosaics, along with similar data for Greenland (see Fig.2), were published by Mouginot et al, (2017) last month as part of NASA’s MEaSUREs (Making Earth System Data Records for Use in Research Environments) program.

How were these images constructed?

The mosaics shown today (Fig 1 and 2) were built by combining optical imagery from the Landsat-8 satellite with radar (SAR) data from the Sentinel-1a/b, RADARSAT-2, ALOS PALSAR, ENVISAT ASAR, RADARSAT-1, TerraSAR-X, and TanDEM-X sensors.

Although the authors used the well-known techniques of feature and speckle tracking to produce their velocities from optical and radar images, respectively, the major novelty of their study lies in the automation and integration of the different datasets.

Fig.2: Mosaics of yearly velocity maps of the Greenland and Antarctic ice sheet for the period 2015-2016.Composite of satellite-derived yearly ice sheet speeds from 2005-2016 for both Greenland and Antarctica. [Credit: cover figure from Mouginot et al. (2017)]

How is this new dataset useful?

Previously, ice sheet modellers have used mosaics composed of satellite data from multiple years to cover the entire ice sheet. However, this new dataset is one of the first to provide an ice-sheet-wide geographic scale, a yearly temporal resolution, and a moderately high spatial resolution (1km). This means that modellers can now better examine how large parts of the Greenland and Antarctic ice sheets evolve over time. By linking the evolution of the ice sheets to the changes in weather and climate over those ice sheets during specific years, modellers can calibrate the response of those ice sheets’ outlet glaciers to different climate conditions. The changes in the speeds of these outlet glaciers have important consequences for the amount of sea level rise expected for a given amount of warming.

How can I start using this data?

The yearly MEaSUREs data is hosted at the NSIDC in NetCDF format. The maps shown in the animated image were made using Quantarctica/QGIS (for more information on Quantarctica, check out our previous post E). QGIS natively supports NetCDF files like these mosaics with no additional import steps. Users can quickly calculate new grids showing speed, changes in velocities between years, and more by using the QGIS Raster Calculator or gdal_calc.

References/ Further Reading

Mouginot, J., Rignot, E., Scheuchl, B., & Millan, R. (2017). Comprehensive Annual Ice Sheet Velocity Mapping Using Landsat-8, Sentinel-1, and RADARSAT-2 Data. Remote Sensing, 9(4), 364.

Image of the Week – Quantarctica: Mapping Antarctica has never been so easy!

Image of the Week – A high-resolution picture of Greenland’s surface mass balance

Written with help from Jelte van Oostsveen
Edited by Clara Burgard and Sophie Berger

George Roth is the Quantarctica Project Coordinator in the Glaciology group (@NPIglaciology) at the Norwegian Polar Institute. He has spent the last several years helping researchers with GIS, cartography, and remote sensing in both the Arctic and Antarctic.

Image of the Week – A high-resolution picture of Greenland’s surface mass balance

Image of the Week – A high-resolution picture of Greenland’s surface mass balance

The Greenland ice sheet – the world’s second largest ice mass – stores about one tenth of the Earth’s freshwater. If totally melted, this would rise global sea level by 7.4 m, affecting low-lying regions worldwide. Since the 1990s, the warmer atmosphere and ocean have increased the melt at the surface of the Greenland ice sheet, accelerating the ice loss through increased runoff of meltwater and iceberg discharge in the ocean.

Simulating the climate with a regional model

To understand the causes of the recent ice loss acceleration in Greenland, we use the Regional Atmospheric Climate Model RACMO2.3 (Noël et al. 2015) that simulates the evolution of the surface mass balance, that is the difference between mass gain from snowfall and mass loss from sublimation, drifting snow erosion and meltwater runoff. Using this data set, we identify three different regions on the ice sheet (Fig. 1):

  • the inland accumulation zone (blue) where Greenland gains mass at the surface as snowfall exceeds sublimation and runoff,

  • the ablation zone (red) at the ice sheet margins which loses mass as meltwater runoff exceeds snowfall.

  • the equilibrium line (white) that separates these two areas.

From 11 km to 1 km : downscaling RACMO2.3

To cover large areas while overcoming time-consuming computations, RACMO2.3 is run at a relatively coarse horizontal resolution of 11 km for the period 1958-2015. At this resolution, the model does not resolve small glaciated bodies (Fig. 2a), such as narrow marginal glaciers (few km wide) and small peripheral ice caps (ice masses detached from the big ice sheet). Yet, these areas contribute significantly to ongoing sea-level rise. To solve this, we developed a downscaling algorithm (Noël et al., 2016) that reprojects the original RACMO2.3 output on a 1 km ice mask and topography derived from the Greenland Ice Mapping Project (GIMP) digital elevation model (Howat et al., 2014). The downscaled product accurately reproduces the large mass loss rates in narrow ablation zones, marginal outlet glaciers, and peripheral ice caps (Fig. 2b).

Fig. 2: Surface mass balance (SMB) of central east Greenland a) modelled by RACMO2.3 at 11 km, b) downscaled to 1 km (1958-2015). The 1 km product (b) resolves the large mass loss rates over marginal outlet glaciers [Credit: Brice Noël].


The high-resolution data set has been successfully evaluated using in situ measurements and independent satellite records derived from ICESat/CryoSat-2 (Noël et al., 2016, 2017). Recently, the downscaling method has also been applied to the Canadian Arctic Archipelago, for which a similar product is now also available on request.

Endangered peripheral ice caps

Using the new 1 km data set (Fig. 1), we identified 1997 as a tipping point for the mass balance of Greenland’s peripheral ice caps (Noël et al., 2017). Before 1997, ablation (red) and accumulation zones (blue) were in approximate balance, and the ice caps remained stable (Fig. 3a). After 1997, the accumulation zone retreated to the highest sectors of the ice caps and the mass loss accelerated (Fig. 3b). This mass loss acceleration was already reported by ICESat/CryoSat-2 satellite measurements, but no clear explanation was provided. The 1 km surface mass balance provides a valuable tool to identify the processes that triggered this recent mass loss acceleration.

Fig. 3: Surface mass balance of Hans Tausen ice cap and surrounding small ice bodies in northern Greenland before (a) and after the tipping point in 1997 (b). Since 1997, the accumulation zone (blue) has shrunk and the ablation zone (red) has grown further inland, tripling the pre-1997 mass loss [Credit: Brice Noël].


Greenland ice caps are located in relatively dry regions where summer melt (ME) nominally exceeds winter snowfall (PR). To sustain the ice caps, refreezing of meltwater (RF) in the snow is therefore a key process. The snow acts as a “sponge” that buffers a large amount of meltwater which refreezes in winter. The remaining meltwater runs off to the ocean (RU) and contributes to mass loss (Fig. 4a).

Before 1997, the snow in the interior of these ice caps could compensate for additional melt by refreezing more meltwater. In 1997, following decades of increased melt, the snow became saturated with refrozen meltwater, so that any additional summer melt was forced to run off to the ocean (Fig. 4b), tripling the mass loss.

Fig. 4: Surface processes on an ice cap: the ice cap gains mass from precipitation (PR), in the form of rain and snow. a) In healthy conditions (e.g. before 1997), meltwater (ME) is partially refrozen (RF) inside the snow layer and the remainder runs off (RU) to the ocean. The mass of the ice cap is constant when the amount of precipitation equals the amount of meltwater that runs off. b) When the firn layer is saturated with refrozen meltwater, additional meltwater can no longer be refrozen, causing all meltwater to run off to the ocean. In this case, the ice cap loses mass, because the amount of precipitation is smaller than the amount of meltwater that runs off [Credit: Brice Noël].

  In 1997, following decades of increased melt, the snow became saturated with refrozen meltwater, so that any additional summer melt was forced to run off to the ocean, tripling the mass loss.

We call this a “tipping point” as it would take decades to regrow a new, healthy snow layer over these ice caps that could buffer enough summer meltwater again. In a warmer climate, rainfall will increase at the expense of snowfall, further hampering the formation of a new snow cover. In the absence of refreezing, these ice caps will undergo irreversible mass loss.

What about the Greenland ice sheet?

For now, the big Greenland ice sheet is still safe as snow in the extensive inland accumulation zone still buffers most of the summer melt (Fig. 1). At the current rate of mass loss (~300 Gt per year), it would still take 10,000 years to melt the ice sheet completely (van den Broeke et al., 2016). However, the tipping point reached for the peripheral ice caps must be regarded as an alarm-signal for the Greenland ice sheet in the near future, if temperatures continue to increase.

Data availability

The daily, 1 km Surface Mass Balance product (1958-2015) is available on request without conditions for the Greenland ice sheet, the peripheral ice caps and the Canadian Arctic Archipelago.

Further reading

Edited by Sophie Berger

Brice Noël is a PhD Student at IMAU (Institute for Marine and Atmospheric Research at Utrecht University), Netherlands. He simulates the climate of the Arctic region, including the ice masses of Greenland, Svalbard, Iceland and the Canadian Arctic, using the regional climate model RACMO2. His main focus is to identify snow/ice processes affecting the surface mass balance of these ice-covered regions. He tweets as: @BricepyNoel Contact Email:

Image of the Week – On the tip of Petermann’s (ice) tongue

Image of the Week – On the tip of Petermann’s (ice) tongue

5th August 2015, 10:30 in the morning. The meeting had to be interrupted to take this picture. We were aboard the Swedish icebreaker Oden, and were now closer than anyone before to the terminus of Petermann Glacier in northwestern Greenland. But we had not travelled that far just for pictures…

Petermann’s ice tongue

Petermann is one of Greenland’s largest “marine terminating glaciers”. As the name indicates, this is a glacier, i.e. frozen freshwater, and its terminus floats on the ocean’s surface. Since Petermann is confined within a fjord, the glacier is long and narrow and can be referred to as an “ice tongue”.

Petermann Glacier is famous for its recent calving events. In August 2010, about a quarter of the ice tongue (260 km2) broke off as an iceberg (Fig. 2). In July 2012, Petermann calved again and its ice tongue lost an extra 130 km2.

These are not isolated events. Greenland’s marine terminating glaciers are all thinning and retreating in response to a warming of both air and ocean temperatures (Straneo et al., 2013), and Greenland’s entire ice sheet itself is threatened. Hence, international fieldwork expeditions are needed to understand the dynamics of these glaciers.

Fig. 2: The 2010 calving event of Petermann. Natural-color image from the Advanced Land Imager (ALI) on NASA’s Earth Observing-1 (EO-1) satellite ( August 16, 2010).  [Credit: NASA’s Earth Observatory]

The Petermann 2015 expedition

In summer 2015, a paleoceanography expedition was conducted to study Petermann Fjord and its surroundings, in order to assess how unusual these recent calving events are compared to the glacier’s past. Our small team focused on the present-day ocean, and specifically investigated how much of the glacier is melted from below by the comparatively warm ocean (that process has been described on this blog previously). In fact, this “basal melting” could be responsible for up to 80% of the mass loss of Petermann Glacier (Rignot, 1996). Additionally, we were also the first scientists to take measurements in this region since the calving events.

Our results are now published (Heuzé et al., 2017). We show that the meltwater can be detected and tracked by simply using the temperature and salinity measurements that are routinely taken during expeditions (that, also, has been described on this blog previously). Moreover, we found that the processes happening near the glacier are more complex than we expected and require measurements at a higher temporal resolution, daily to hourly and over several months, than the traditional summer single profiles. Luckily, this is why we deployed new sensors there! And since these have already sent their data, we should report on them soon!

Edited by David Rounce and Sophie Berger

References and further reading

Polar Exploration: Perseverance and Pea Sausages

Polar Exploration: Perseverance and Pea Sausages

Born on this Day

Portrait of Ludvig Mylius-Erichsen by Achton Friis. [Credit: Danish Arctic Institute].

On this day in 1872 – 145 years ago –Ludvig Mylius-Erichsen, Danish author and polar explorer, was born. He led two expeditions to Greenland and successfully mapped the then unknown northeastern part of the country. The second expedition was his last. The expedition was surprised by an early onset of spring and could no longer use their dog sledges. The two Danes, Mylius-Erichsen and Høeg Hagen died in November 1907 of cold and hunger. Their bodies have never been found. The last remaining expedition member, the Greenlander Brønlund, continued the journey alone but perished a few weeks later. His body and the expedition diary was found in 1908.

Thousands of Pea Sausages

The tin on the image above contains “pea sausage” and was essentially the world’s first ready meal: A mixture of ground peas, beef fat, bacon, spices and salt. Pea sausage was invented in 1867 in Germany and was a common part of military and expedition rations up until the beginning of the 20th century.

Mylius-Erichsen’s expedition brought along 1756 tins of this kind. Each tin contained 6 tablets of pea sausage, that mixed with ¼ water would make a nourishing soup. And the taste? On his first expedition, Mylius-Erichsen wrote:

“The evening meals in the three boxes consisted mainly of different kinds of sturdy soups, black pudding, meat pie, beef, pea sausage and sizeable portions of vegetable such as cabbage, beans and carrots. We only used one third of the evening meal rations on the way out. We did not like the taste of the meat but black pudding, peas and the different kinds of soup were heavenly”.

And later:

“Jørgen and I had dinner at Amarfik’s, and dinner consisted both days of little auks boiled in our last portion of pea sausage – a wonderful dish…”

Members of Mylius-Erichsen’s first expedition: Brønlund, Bertelsen, Mylius-Erichsen, Rasmussen and Moltke. [Credit: Danish Arctic Institute].

Photos and descriptions are from the Danish Arctic Institute (@arktiskinstitut) where you can also see a full 360 degrees photo of the tin.

Check out more historical footage from Greenland in a previous Image of the Week showing aerial photos from the 1930s.

Edited by: Sophie Berger

Image of the Week – The Sound of an Ice Age

Image of the Week – The Sound of an Ice Age

New Year’s Eve is just around the corner and the last “image of the week” of 2016 will get you in the mood for a party. If your celebration needs a soundtrack with a suitably geeky touch then look no further. Here is the music for climate enthusiasts: The sound of the past 60,000 years of climate. Scientist Aslak Grinsted (Centre for Ice and Climate, University of Copenhagen, Denmark) has transformed the δOxygen-18 values from the Greenland NorthGRIP ice core and the Antarctic WAIS ice core into music (you can read more about ice cores in our Ice Cores for Dummies post). Using the Greenlandic data as melody and the Antarctic data as bassline, Aslak has produced some compelling music.

You can listen to his composition and read more about his approach here.

The δOxygen-18 values are a measure of the isotopic composition of the ice, and they are a direct indicator of temperature. The image of the week above shows the isotope values for the past 20,000 years as measured by polar ice cores. On the left-hand side, we are in present-day: an inter-glacial. The δOxygen-18 values are high indicating high temperatures. In contrast, on the right-hand side of the figure we are in the last glacial with lower δOxygen-18 values and lower temperatures. One remarkable thing about these curves is how fast the temperature changes in Greenland (top) compared to Antarctica (bottom). This delayed coupling is called the Bipolar Seesaw.

The clefs are our own addition of course. We have not included the time signature because who knows what the rhythm of the climate might be? (Personally, I think it might be in ¾ like a waltz: An unrestrained movement forward with small underlying variations).

The data from Antarctica is published by WAIS Divide Project Members, 2015. The Greenlandic data can be found on the Centre for Ice and Climate website and in publications by Vinther et al., 2006, Rasmussen et al., 2006, Andersen et al., 2006 and Svensson et al., 2006.

Happy New Year!