CR
Cryospheric Sciences

Early career

Mapping the bottom of the world — an Interview with Brad Herried, Antarctic Cartographer

Mapping the bottom of the world — an Interview with Brad Herried, Antarctic Cartographer

Mapping Earth’s most remote continent presents a number of unique challenges. Antarctic cartographers and scientists are using some of the most advanced mapping technologies available to get a clearer picture of the continent. We asked Brad Herried, a Cartographer and Web Developer at the Polar Geospatial Center at the University of Minnesota, a few questions about what it’s like to do this unique job both on and off the ice.


Before we go too much further… what is the Polar Geospatial Center, and what does it do for polar science and scientists?

The Polar Geospatial Center (PGC), founded in 2007 by Director Paul Morin, is a research group of about 20 staff and students at the University of Minnesota with a simple mission: solve geospatial problems at the poles (Antarctica and the Arctic). Because we are funded (primarily) through the U.S. National Science Foundation (NSF) and NASA Cryospheric Sciences, that is the community we support – other U.S.-funded polar researchers. We provide custom maps, high-resolution commercial satellite imagery, and Geographic Information System (GIS) support for researchers who would like to use the data for their research but may not have the expertise to do so.

Our primary service is providing high-resolution satellite imagery (i.e. from the DigitalGlobe, Inc. constellation) to U.S.-funded polar researchers – at no additional cost to their grants – through licensing agreements with the U.S. Government. It has proven beneficial to researchers to have a service so that we do the hard parts of data management, remote sensing, and automation of satellite imagery processing so that they don’t have to. So, a glaciologist or geomorphologist or wildlife ecologist studying at the poles may come to us and say: I would like to use satellite imagery to study phenomenon x or y. Some groups use it just for logistics (these are some of the least mapped places on Earth after all) to get to their site. Some groups’ entire research is done using remote sensing.

What kinds of data and resources do you use?

The PGC’s polar archive of high-resolution commercial imagery is absolutely astounding (like, in the thousands of terabytes). The imagery, although licensed to us by U.S. Government contracts, is collected by the DigitalGlobe, Inc. constellation of satellites (e.g. WorldView-2), much like the imagery where you can see your house/car in Google Earth. The benefit is that we can provide it at no cost to our users (researchers). That resource, along with the expertise of the staff at PGC, can provide solutions to users, whether it’s making a simple map of a remote research site or providing a time-series of satellite imagery for a researcher studying change detection (like, say for a glacier front in Greenland).

This also presents a challenge. How do we manage and effectively deliver that much data? We have relied on skilled staff, ingenuity, cheap storage, high-performance computing, and automation to become successful.

As the saying goes, automate or die.

What’s your role at the PGC? How did you find your way into a job like this?

I started at the PGC as a graduate student in 2008. I knew nothing about Antarctica or the Arctic, but my background and studies in GIS & cartography offered a wide range of jobs. After I graduated, I became a full-time employee as the lead cartographer of the (at the time, very small) group. Currently, I do a lot more GIS web application development and geospatial data management. We have recognized the need for more automated, “self-service” systems for our users to get the data they need in a timely manner, and less of asking a PGC employee for a custom product. As the saying goes, automate or die. But, of course, I still spend a fair bit of my times creating maps to keep my cartographic juices going.

Antarctica and the South Polar Regions. Map from the American explorer Richard Byrd’s second expedition in 1933. [Credit: Byrd Antarctic Expeditions]

What kind of work do PGC employees do in Antarctica?

The PGC staffs an office at the United States’ McMurdo Station annually from October to February, with 3-5 staff rotating throughout the field season. It is really an extension of our responsibilities, with a couple interesting twists, both good and bad. First, a majority of our users (NSF-funded researchers) come through McMurdo Station in preparation for their fieldwork. It’s a beneficial and unique experience to meet with them one-on-one and solve problems, ironically, faster than email exchanges back in the States. Second – and this is true of all of Antarctica – the internet bandwidth is very limited. So, we have to a) prepare more regarding what data/imagery we have on site and b) do more with less. That always proves to be a fun challenge because it is impossible to access our entire archive of imagery from down there.

How could I forget collecting Google Street View in Antarctica.

There have been several years, however, when we do get to go out into the field! In past years, we have conducted various field campaigns in the nearby McMurdo Dry Valleys to collect survey ground control to make our satellite imagery more accurate. And, how could I forget collecting Google Street View (with some custom builds of the typical car-camera system for snowmobiles, heavy-duty trucks, and backpacks). The Google Street View provides a window into the world of Antarctica – history, facilities, science, and of course its beautiful landscapes – to a wide audience who only dream of visiting Antarctica.

Brad on a snowmobile collecting Google Street View imagery [Credit: Brad Herried]

What are some of the interesting projects PGC has worked on? What’s exciting at PGC right now?

The PGC does a lot to contribute to polar mapping. There’s not exactly a ton of geospatial data or maps for the polar regions, especially Antarctica. What data or maps there are, it is not often of very high quality. For example, there are regions of Antarctica (especially in inland East Antarctica) which have not been properly mapped or surveyed since the 1960s. Those maps offer little help if you’re trying to land an aircraft in the area. So, PGC has done a lot to improve that geospatial data including creating more accurate coastlines, improving geographic coordinates of named features (sometimes the location can be off by 10s of kilometers!), organizing historic aerial photography, and digitizing map collections. These are important to have, but it all changes when you can collect data 100 times more accurate with satellites…

There’s not exactly a ton of geospatial data or maps for the polar regions, especially Antarctica.

Where it gets really interesting is how we can apply our archive of satellite imagery to help researchers solve problems or come up with cutting-edge solutions with the data. One example is the ArcticDEM project. In a private-public collaboration, PGC is using high performance computing (HPC) to develop a pan-Arctic Digital Elevation Model (DEM) at a resolution 10 times better than what exists now. This project requires hundreds of thousands of stereoscopic satellite imagery pairs to be processed using photogrammetry techniques to build a three-dimensional model of the surface for the entire Arctic. There are countless more applications for the imagery and we’ll continue to push the limits of the technology to produce innovative products to help measure the Earth and solve really important research questions.

ArcticDEM hillshade in East Greenland. DEM(s) created by the Polar Geospatial Center from DigitalGlobe, Inc. imagery. [Credit: Brad Herried/ Polar Geospatial Center].

 

What resources can cryosphere researchers and other polar scientists without US funding get from PGC to enhance their research?

Our website provides a wealth of non-licensed data, freely available to download. That includes our polar map catalog (with over 2,000 historic maps of the polar regions), aerial photography, and elevation data. The ArcticDEM project I mentioned before is freely available (see https://www.pgc.umn.edu/data/arcticdem/), as are all DEMs created (derived) from the optical imagery. Moreover, we work with the international community on a regular basis to continue mapping efforts across both poles.

 

What advice do you have for students interested in a career in science or geospatial science?

This might be a little bit of a tangent, but learn to code. I was trained in cartography ten years ago and we hardly touched the command line. Now? You certainly don’t have to be an expert, say, Python programmer, but you’re behind if you don’t know how to automate some of your tasks, data processing, analysis, or other routine workflows. It allows you to focus on the things you’re actually an expert in (and, employers are most certainly looking for these skills).

ArcticDEM hillshade of Columbia Glacier, Alaska. DEM(s) created by the Polar Geospatial Center from DigitalGlobe, Inc. imagery. [Credit: Brad Herried/ Polar Geospatial Center].

Personally, what has been the highlight of your time at PGC so far?

I will never forget the first time I stepped off the plane landing in Antarctica as a graduate student. A surreal, breathtaking (literally), and completely foreign feeling. To be able to experience the most remote places on Earth first-hand naturally leads to a better understanding of them. So, the highlight for me is this: I find myself asking more questions, talking to the preeminent researchers and students about their work, and discovering the purpose of it all. I may be a small piece in the puzzle of understanding our Earth’s poles, but I’m humbled to be a part.

Interview and Editing by George Roth, Additional Editing by Sophie Berger

Image of the Week — We’re heading for Vienna

Image of the Week — We’re heading for Vienna
Tatata taaa tatatatata Tatata taaa tatatatatatatata
We’re heading for Vienna (Vienna)
And still we stand tall
‘Cause maybe they’ve seen us (seen us)
And welcome us all, yeah
With so many miles left to go
And things to be found (to be found)
I’m sure that we’ll all miss that so
it’s the … 
…congratulations, you’ve recognise the song…..it is the Final Countdown (slightly adapted!)

With the EGU general assembly starting in two days only, we hope that your presentations are almost ready that you haven’t forgotten to include in your programme all the cool stuff listed in our cryo-guide!

 

However, if you don’t have time to read it all, please make sure you’ve heard of these 3 events :
  1. the pre-icebreaker meet up on Sunday 23rd from 16:00 aida (close to Stefanplatz)
  2. the Cryoblog lunch on Tuesday 25th 12:15 in front of the entrance.
    If you like this blog, are curious about it and would like to contribute to it  — directly and/or indirectly — please come and meet us on Tuesday (for more information please email sberger@ulb.ac.be or emma.smith@awi.de)
  3. the cryo night out on Thursday 27th from 19:30 at Wieden Braü

 

See you in Vienna!

PS: We take no responsibility for anyone who finds they have Final Countdown stuck in their head all week! (♪ Tatata taaa tatatatata Tatata taaa tatatatatatatata ♫)

Edited by Emma Smith

A brief guide to navigating EGU 2017!

A brief guide to navigating EGU 2017!

Are you going to the EGU General Assembly in Vienna next week? If so, read on for a quick guide to navigating the week: Where to start, what to see and how to meet people and enjoy yourself! After all, the meeting is as much about the opportunities meet scientists from all over the world as it is about the science itself.


How on Earth do I know what is going on?!

The EGU General Assembly is a massive meeting with many parallel session, short courses, medal lectures and much more. So how do you know what is going on and when, and how can you effectively keep track of it all? The simplest way is to use the online EGU program – it has options to browse sessions of interest chronologically or by discipline. You can simply click on a session or an individual presentation to add it to your personal programme. You can then view your personal program online, print it as a PDF or if you have a smartphone you can also use the EGU2017 mobile app to keep track of your personal program on the go – scan the QR code to download it or click here from your smartphone.

Don’t forget to keep track of the twitter hastag #EGU17 to see what is happening on a second by second basis and also the #CryoEGU17 hashtag for up-to-date cryosphere news.


Short courses

Short courses at EGU are designed to give you an insight into a certain area or topic and cover all sorts of subjects and skills. There are many courses running at EGU this year – we have highlighted a few below, but be sure to check out the full list in the online program. Short courses provide a great chance to learn about a topic, skill or piece of software that has been on your to do list, so why not drop by and meet the experts who have kindly agreed to participate and share their knowledge?

How to navigate EGU: tips & tricks

When and Where: Mon, 24 Apr, 08:30–10:00,  Room -2.31

Held first thing on Monday morning, this could be just the session you need to get your week off to a productive start!

Quantarctica

When and Where: Mon, 24 Apr, 13:30–15:00, Room -2.31

Are you working on Antarctica data and getting to grips with GIS? Then this course is for you! The User Workshop is aimed at beginning and intermediate GIS users and Antarctic researchers interested in learning how to integrate, analyze, and present their own research data with the free, open-source, cross-platform QGIS software. Participants should install and test the latest version of the Quantarctica package on their laptops prior to arriving at the workshop.

Crashing the Cryosphere

When and Where: Mon, 24 Apr, 15:30–17:00, Room -2.16

This is one to tell your cryo-curious friends from other divisions about!  We are inviting scientists from all areas to join us in “gate-crashing” the Cryosphere Division and learn about how topics in cryospheric science are relevant to their research. During the short course, four cryosphere experts will introduce their research, giving you the background to venture further into cryospheric topics during the rest of the meeting.

  • Keynote Intro: Olaf Eisen (The AWI, DE and head of EGU Cryosphere Division)
  • Ice-Ocean interaction: Inga Koszalka (GEOMAR, Kiel, DE)
  • The Arctic Atmosphere : John Prytherch (MISU, Stockholm, SE)
  • Avalanches: Thierry Faug (Irstea, FR)
  • GIA/Solid Earth: Valentina Barletta (DTU, DK)

Communicating Climate Change – blogging as a group

When and Where: Wed, 26 Apr, 13:30–15:00, Room -2.85

Blogs are a great way to communicate your science, but where do you start? This interactive short course will begin with an introduction from Mathew Reeve, founder of ClimateSnack. It will then be over to you to get some practice experience at editing a blog post – turning an awful draft into a pleasant and clear blog post. Please bring a pen and paper.

Successful strategies to design, develop and write a scientific paper

When and Where: Wed, 26 Apr, 17:30–19:00, Room N2

An essential part of a career in research is publishing papers in peer-reviewed journals. This means responding to reviews of your own work and reviewing the work of other scientists. In this short course you will get the chance to learn how to navigate the review process. The course will start with some advice, tip and tricks from Benjamin Rabe (Researcher, AWI, Germany), Julienne Stroeve (Senior Research Scientist, NSIDC, USA), Tom Coulthard (Professor of Physical Geography, University of Hull, UK) and Paul Cumine (Publisher, Geophysics and Oil & Gas Journals, Elsevier Ltd., UK) before a panel discussion to allow you to get answers to those burning questions you may have!

Polar Science Career Panel (EGU Cryosphere and APECS)

When and Where: Thu, 27 Apr, 15:30–17:00, Room -2.16

Many early career scientists come to EGU looking for inspiration to take the next step in their careers. There are so many opportunities both academic and elsewhere that it can be daunting to know where to start looking and what the options are. Join us for a panel discussion about everything to do with life post-polar-PhD and expand your ideas about where you might go next. Our panelists are:

  • Felicity Liggins (Climate Scientist and Outreach Program Manager, Met Office, UK)
  • Robert McSweeney (Science Writer, Carbon Brief)
  • Lindsey Nicholson (PostDoc, Uni. Innsbruck, Austria)
  • Kerim Nisancioglu (Prof. Of Earth Sciences, Uni. Bergen, Norway)
  • Wiebke Schubotz (Project Coordinator of HD(CP)², Max Planck Institute for Meteorology, Germany)


Social event for Early Career Cryosphere Scientists!

So you have an idea of what scientific stuff is going on, but there is, of course, another important aspect to any conference…. they are a great place to socialise! However, it can be very daunting to know how and where to meet people at such a large meeting. This year the EGU Cryosphere team are organising two social events joint with APECS as well as a lunch for anyone who is interested in joining our blog team – also don’t forget the March for Science taking place on Saturday the 22nd April.

Pre-Icebreaker Meet Up

The conference icebreaker can be a daunting experience to attend alone but it is a great event to go along to. We are organising a friendly pre-icebreaker meet up for cryospheric ECSs on Sunday 23rd from 16:00We will meet at a yet-to-be-determined cafe in Vienna, have a chat, do some networking, have a cake and then head to the EGU conference centre together in time for the icebreaker. Keep your eyes on the Facebook event for more details!

Cryo Night Out!

On Thursday evening (27th), after the Polar Science Career Panel there will be a joint APECS and EGU Cryosphere division night out. We will be leaving from the conference centre after the panel session (Room -2.16) and heading for Wieden Braü for food and drinks, you can walk down with us as a group or meet there at 19:30. If you would like to eat please fill out the Facebook poll to give us an idea of numbers! Hopefully see plenty of faces old and new there 😀

EGU Cryosphere Bloggers Lunch

An informal lunch meeting for anyone interested in getting involved in the EGU Cryosphere blog on Tuesday 25th. Meet in front of the main entrance at 12:15 and we will decide on where to go depending on the weather. Please email the editors Emma (emma.smith@awi.de) or Sophie (sberger@ulb.ac.be) if you want to come along but aren’t sure who to look for. As an extra incentive Sophie will be bringing some Belgian chocolate!!

Ice Core Young Scientist (ICYS) social

Early-career scientists with an interest in ice cores are invited to join the Ice Core Young Scientists (ICYS) for a get-together with drinks and/or dinner on Tuesday 25th, from 18:30 (more details on facebook).
The get-together will take place at Café Einstein, Rathausplatz 4, Vienna . For those going directly from the conference venue, we will be leaving from there at 17:45, and you can find us (Mai Winstrup & Emma Kahle) by the main entrance.

March for Science

The day before the official start of the EGU GA (Saturday 22nd April) is Earth Day. On this day scientists and science enthusiasts across the globe will be marching to celebrate science and to call for the safeguarding of its future. A satellite march organised by local researchers is taking place in Vienna. If you are going to be in Vienna on the Saturday then it is a great chance to get involved – find out more details, including where and when to meet, on the EGU blog.


Am I an ECS?

The EGU officially defines an Early Career Scientist (ECS) as:

an undergraduate or postgraduate (Masters/PhD) student or a scientist who has received his or her highest degree (BSc, MSc, or PhD) within the past seven years  (where appropriate, up to one year of parental leave time may be added per child).

However, everyone is of course more than welcome to come along and  attend the short courses and social events organised by your ECS team, the more the merrier!


General Advice….

The General Assembly can be an overwhelming experience. Here are some tips from the EGU Cryosphere’s esteemed ECS representative Nanna Karlsson:

  • Take advantage of the lunch breaks and go for a walk! When you exit the main conference building turn left and head for the river, or turn right and you will find that behind the concrete buildings there is a very nice park.
  • Go to a session outside your field or area of interest. Even in completely different research topics, I often find similarities in methods or applications that inspire me to think differently about my own research.
  • Explore Vienna and treat yourself to a bit of time off to recover during the week. If your programme is completely packed, then hurry to the U-Bahn in a lunch break (the ticket is after all included in the registration fee) and go to the centre of town. Half an hour’s stroll will give you at least an impression of the city and you will not leave Vienna with the feeling that you have really only seen the conference centre.

Edited by Nanna Karlsson

Image of the Week — FRISP 2016

Image of the Week — FRISP 2016

The Forum for Research into Ice Shelf Processes, aka FRISP, is an international meeting bringing together glaciologists and oceanographers. There are no parallel sessions; everyone attends everyone else’s talk and comment on their results, and the numerous breaks and long dinners encourage new and interdisciplinary collaborations. In fact, each year, a few presentations are the result of a previous year’s question!

The location changes every year, moving around the institutions that are involved with Arctic and Antarctic research. The 2016 edition just occurred this week, 3rd – 6th October, in a marine research station of the University of Gothenburg, in the beautiful Gullmarn Fjord.

Each year, a few presentations are the result of a previous year’s question!

Fjord at the sunset [Credit: Céline Heuzé]

Gullmarn fjord at the sunset [Credit: Céline Heuzé]

70 participants from 37 institutions:

  • Attended 49 talks on model results, new observation techniques, and everything in between;

  • Spent more than 15h discussing these results, including 2h around 15 posters;

  • Drank 50 L of coffee, 60 L of tea, 20 L of lingon juice… and a fair amount of wine!

Poster session at the FRISP 2016 meeting. [Credit: Céline Heuzé]

Poster session at the FRISP 2016 meeting. [Credit: Céline Heuzé]

I can’t really choose THE highlight of the conference.
As an organiser, it was a real pleasure to simply see it happen after all the long hours of planning.
As a scientist, it was a great and productive meeting, giving me new ideas and the opportunity to discuss my recent work with the big names of the field in a friendly environment.
And as a human, I enjoyed most the under-ice footages, and in particular the general ”ooooh” that came from the audience.

It was a bit sad to say goodbye to the participants, old friends and new collaborators. But I know that I will see them again during FRISP 2017… and I hope to see you there as well!

 Edited by Sophie Berger and Emma Smith

Fieldwork at 5,000 meters in altitude

Fieldwork at 5,000 meters in altitude

Imja Lake is one of the largest glacial lakes in the Nepal Himalaya and has received a great deal of attention in the last couple decades due to the potential for a glacial lake outburst flood. In response to these concerns, the UNDP has funded a project that is currently lowering the level of the lake by 3 m to reduce the flood hazard. The aim of our research efforts is to understand how quickly the glacier is melting and how rapidly the lake is expanding such that we can model the flood hazard in the future. The focus of this research expedition was to install an automatic weather station, measure the thickness of the ice behind the calving front of Imja Lake, and measure the bathymetry of Imja Lake amongst other smaller tasks.

However, before any work could be done, we had to get there first.

The 8-day trek from Lukla to Imja Lake [Credit: GoogleEarth]

The 8-day trek from Lukla to Imja Lake [Credit: GoogleEarth]

The long trek in

Tenzing-Hillary Airport in Lukla, at an altitude of 2,845 m [Credit: D. Rounce]

Tenzing-Hillary Airport in Lukla, at an altitude of 2,845 m [Credit: D. Rounce]

The launch point for our expedition was Kathmandu, Nepal, where we met with our trekking agency, Himalayan Research Expedition, purchased any last minute supplies, and took a day to kick our jet lag. Then the real trip began with a flight from Kathmandu to Lukla. Depending on the weather, this flight can be smooth and showcase the splendor of the Himalaya or it can be nerve-wracking flying through turbulence and clouds. Unfortunately, we had the latter and spent most of the 30-minute class flying through white clouds. Once our feet touched the ground at Tenzing-Hillary Airport, we were all excited and ready to start trekking.

Located at 5010 m above sea level (a.s.l) in the Everest region of the Himalaya, Imja Lake required 8 days of trekking to reach our base camp. The first 6 days followed the route to Everest Base Camp and provided the first glimpses of Everest, Lhotse, and Ama Dablam among many others. Due to the late start of our trek on May 29th, the monsoon clouds often blocked most of these peaks, so whenever the skies did clear we enjoyed them thoroughly. The 8-day trek also included two rest days (one in Namche and one in Dingboche) that were critical to be properly acclimated. The general rule of thumb that we follow is an acclimatization day for every 1,000 m of elevation gain. After the first rest day at Namche, at 3,400 m.a.s.l., the effects of altitude began to set in. The trekking slowed down as oxygen was a bit harder to come by. By the time we reached Imja Lake, there was about half as much oxygen as there is at sea level.

At 5,000 meters in altitude there is about half as much oxygen as there is at sea level

Imja Lake looked…different

The team at our base camp at Imja Lake [Credit: D. Rounce]

The team at our base camp at Imja Lake [Credit: D. Rounce]

I was beyond excited to be back at Imja Lake. This was my 5th time at the lake and this time I was accompanied by a great team of colleagues. This project is funded by the NSF’s Dynamics of Coupled Natural and Human Systems (CNH) program and is led by Daene McKinney (University of Texas), Alton Byers (University of Colorado Boulder), and Milan Shrestha (Arizona State University). One of the great aspects of this trip was we were all able to be in the field at the same time providing an excellent mix of fieldwork on the glacier and social science work with the communities downstream. My group consisted of myself, Greta Wells from the University of Texas, Jonathan Burton from Brigham Young University, Alina Karki from Tribhuvan University, and eight hard-working individuals from our trekking agency (unfortunately, Daene was with us, but had to leave the expedition early).

The first drastic change that we saw when we got to Imja Lake was the large camp set up by the Army to work on the lake-lowering project. Usually, the only people that we see up here are people at Island Peak base camp, but now the location where were typically set up camp was packed with tents for the workers. The next surprise was seeing a backhoe operating on the terminal moraine (the natural dam comprising sand, rocks, and boulders). Typically, once you get off the plane in Lukla, you don’t see any motorized transportation besides the occasional helicopter flying to Everest Base Camp, so seeing this large piece of construction machinery was quite surprising! The lake lowering project was fascinating to see in progress. A cougher dam has been established to divert the outlet stream such that the typical outlet can be dredged and an outlet gate established, which will reduce the lake level by 3 m. This is a large undertaking due to the difficulty of working at 5,000 m (for both the workers and the machinery), but is an excellent step forward for Nepal in addressing the hazards associated with their glacial lakes.

The lowering project at Imja Lake in progress [Credit: D. Rounce]

The lowering project in progress at Imja Lake, with a backhoe working on a terminal moraine [Credit: D. Rounce]

Seeing this large piece of construction machinery [at that altitude] was quite surprising!

Let the work begin

On June 6th, we woke up at 6:00 a.m. to pure fog and limited visibility – not the weather you hope for on your first day of fieldwork. Fortunately, the fog burned off as the sun came up giving us a nice partly cloudy day to perform our reconnaissance of the glacier for the upcoming work. The first task was figuring out how to get onto the glacier from the lateral moraines (the sides of the glacier). This may sound trivial, but the glacier has melted such that the lateral moraines are now over 100 m higher than the debris-covered glacier surface and their slopes are very steep, which makes descending down them quite difficult. Fortunately, we found a good spot near Island Peak base camp, where Laxmi (our guide) set a rope and cleared the path of loose rocks and boulders.

Arduous descent onto the glacier [Credit: D. Rounce]

Arduous descent onto the glacier [Credit: D. Rounce]

The glacier has melted such that the lateral moraines are now over 100 m higher

utomatic Weather Station on Imja-Lhotse Shar Glacier [Credit: D. Rounce]

Automatic Weather Station on Imja-Lhotse Shar Glacier [Credit: D. Rounce]

Once on the glacier, we were tasked with determining the location of the weather station and wind tower in addition to finding potential routes for our Ground Penetrating Radar transects. The problem with Imja-Lhotse Shar Glacier is there are very few suitable flat spots. The debris cover on the glacier consists of fine sands, gravel, and boulders with melt ponds and bare ice faces scattered over the surface. The thickness of the debris can range from these bare ice faces to a thin cover of a few centimetres to many meters thick. Needless to say, the heterogeneous terrain can make walking on its surface quite difficult. My initial thought was to use a location where we had installed temperature sensors and ablation stakes two years ago; however, this site had turned into a melt pond ! Hence, we need to select a spot that seems relatively stable such that it won’t be in the middle of a pond when we return!

After many hours of trekking on the glacier, we returned to camp fatigued. The altitude wears you down quickly, especially in the first couple of days, so it’s crucial to stay hydrated, warm, and well rested such that we can work hard for all of the 16 scheduled days that we were out here. I find the first couple days to be the most difficult as my body adjusts to the limited supply of oxygen and for the first 2-3 days I typically have a mild headache in the afternoon. A good meal of dal baht (rice, lentil soup, and typically a meat or vegetable curry) along with a good night’s sleep and a little ibuprofen does the trick to have me feeling refreshed the next day though.

The fieldwork

The first task was to set up the weather station and wind tower. The weather station will record meteorological data every 30 minutes that is important for energy balance modelling. This will allow us to model melt rates that can be applied to the entire glacier such that we can understand the evolution of the debris-covered glacier – crucial for future hazard modelling! The wind tower allows us to measure the surface roughness of the topography, which influences the turbulent heat flux transfers, i.e., the transfer of heat and moisture between the surface of the debris and the air – an important debris property to measure for energy balance modelling as well. Additionally, beneath the weather station, we installed temperature and relative humidity sensors within the debris such that we can understand how heat is transferred through the debris. Each piece of equipment has an essential role in the energy balance modelling.

The other large undertaking in the first week was performing ground penetrating radar (GPR) transects on Imja-Lhotse Shar Glacier. GPR is a geophysical technique that is used to measure and detect objects beneath the surface. In our case, we’ll be trying to measure the ice thickness of the glacier.

Ground Penetrating Radar in short

Ground Penetrating Radar survey in action [Credit: D. Rounce]

Ground Penetrating Radar survey in action [Credit: D. Rounce]

The quick and dirty of GPR is you have a transmitter and a receiver. The transmitter sends a great deal of energy into the ground, which then reflects off various surface, e.g., we should see a strong reflection at the ice/rock interface, and this reflected signal is then picked up by the receiver. Sounds easy right?
Things become a bit more difficult when you get on the debris-covered glacier and everything must be carried or dragged across the surface. This requires a lot of people such that the antennas don’t get stuck on the boulders, requires everyone to be walking at the same speed, and requires that all the electrical connections, batteries, etc. are secure and operating.
In a nutshell, it is a great deal of work, but provides an excellent dataset to understand the extent to which glacial lakes may grow in the future.
When this ice thickness is paired with lake expansion rates, one can predict the evolution of the glacial lake, which is critical for understanding the future hazard associated with Imja Lake. Two full days were spent climbing over the glacier, around bare ice faces and melt ponds, and attempting to collect transects that provide a good picture of the ice thickness behind the calving front of Imja Lake. During these days, we completed half of our planned transects and were ready for our first day of rest.

A flood and a community meeting

After 6 days of hard work, I was exhausted. The plan was to hike down to Chukung at 4700 m.a.s.l., where we would stay for two nights. A change in 300 m may not sound like a lot, but at altitude, this can provide a great boost in energy. During our “rest day” in Chukung, we were planning to hike down to Dingboche (4400 m.a.s.l.) to help out with a focus group session with the community led by Milan. What happened next was completely unexpected… we witnessed a glacier flood!

We witnessed a glacier flood!

A glacier flood threatened the village of Chukung [Credit: D. Rounce]

A glacier flood threatened the village of Chukung [Credit: D. Rounce]

Our colleagues Alton and Elizabeth Byers were heading down to Dingboche before us. Along the way, they heard the sound of a landslide and when they checked to see what it was they were surprised to witness the start of a glacier flood. These floods appeared to have originated from the drainage of supraglacial lakes on Lhotse Glacier and appeared to have discharged through a series of englacial conduits. This englacial conduit flood grew rapidly as the initial flood continued to melt the surrounding ice. The videos that Elizabeth took were absolutely remarkable and fortunately everyone in Chukung was safe. By the time we arrived at the typical crossing point around 3:00 p.m., the flood had supposedly diminished by quite a bit, but was still very powerful. We ended up having to an hour detour over an ice bridge (literally a place on the glacier where the flood had carved into the ice and was going underneath the glacier such that we could walk above the flood on the debris-covered surface). It was truly fascinating to witness a flood from a glacier. When we arrived at Chukung, we made the decision to continue hiking to Dingboche such that we were safely out of the potential flooded area.

The energy in Dingboche was electric. Our entire NSF group was in the lodge and eager to talk to one another. The flood had also sparked a great deal of interest with community members as they witnessed the flood coming downstream and were fortunately able to contact members in Chukung to learn that this was not a larger glacial lake outburst flood (GLOF) from Imja Lake, which alleviated a great deal of concern. After a good meal and great conversation, we were all exhausted and went to bed early (not to mention that for the first time in over a week we were able to reconnect and update family and friends on the internet, which was a wonderful treat as well). The next day we were able to sit in on Milan’s focus group session with the members of Dingboche. From my background in engineering, I was fascinated to see first-hand the important work that Milan was conducting with the community. The community member’s interest and questions were very inspiring. For many years, these communities have seen researchers come to Imja Lake and not share any of their results. This has led to a great deal of skepticism and also led to unnecessary fear and/or panic, so every opportunity that we have to share our results and have a dialogue with the community is crucial. It is wonderful to be working with Milan as his work is a wonderful vessel for us to learn about the community’s concerns and vice versa, for us to share our work with them as well. I’m incredibly excited to see how this work progresses and see the field science and the social science come together.

The community of Dingboche [Credit: D. Rounce]

The community of Dingboche [Credit: D. Rounce]

Every opportunity that we have to share our results and have a dialogue with the [local] community is crucial

Finishing off the fieldwork

After a day of “rest” in Dingboche, our team was ready to get back to work at Imja Lake. The first task was more GPR transects on the glacier. The benefit was that we were all feeling rejuvenated from our days at lower elevations and now that this was our 3rd day of GPR things were running smoothly.

The other benefit was that after almost 10 days at 5000 m.a.s.l. our bodies were feeling well adjusted to the limited supply of oxygen. The headaches that came and went over the first couple days were non-existent. The only downfall was we were now getting into the heart of the monsoon season, where clouds came up the valley every morning and it rained almost every afternoon. The work had to go on though, so we simply shifted our wake-up time an hour earlier in an attempt to avoid the rain.

Greta Wells and Jonathan Burton conducting a bathymetric survey on Imja Lake [Credit: G. Wells]

Greta Wells and Jonathan Burton conducting a bathymetric survey on Imja Lake [Credit: G. Wells]

As our days were winding down, it was time to start splitting up the group. Jonathan and Greta became our kayaking experts and quickly became adept at working the sonar system to conduct a bathymetric survey of Imja Lake. The bathymetric survey is a remarkable experience and one that Jonathan and Greta seemed to thoroughly enjoy. The calving front of Imja Lake is ~10-20 m tall, which seems huge from the view of a kayak on the water. Furthermore, the calving front is quite active each year, so there are icebergs floating on the surface that provide some fun obstacles during the survey. They did a wonderful job and I am incredibly thankful for their support.

While the bathymetric survey was being conducted, Alina and I worked on the Structure from Motion (SfM) survey and the operation of the differential GPS (dGPS). Structure from Motion is a technique that allows us to take hundreds of pictures of the debris-covered surface and transform these pictures into a digital elevation model using the software PhotoScan Pro.

differential GPS measurement of a ground control point [Credit: D. Rounce]

differential GPS measurement of a ground control point [Credit: D. Rounce]

This technique requires ground control points, which is where the dGPS comes into play. The differential GPS provides centimetric accuracy of specific points on the glacier (in our case spray painted boulders), which provide the spatial scale for the digital elevation model. We had ~40 ground control points and each point took approximately 10 minutes to measure… hence, the dGPS survey was a great deal of work. Once again, I have to thank my wonderful colleague, Alina, for her hardwork operating the dGPS with me.

The bathymetric survey, SfM, dGPS, and GPR transects occupied all of our remaining time on the glacier. Two days before I left the glacier, I sent our team members off to visit Everest Base Camp and Kala Patthar as the only activities left were finishing off the dGPS survey and downloading the last bit of meteorological data from the weather station. The trek to Everest Base Camp takes about 2 days from our site and I was glad that they would have an opportunity to go visit – they certainly deserved it. Perhaps one of the best surprises of the trip was the day that Jonathan, Greta, and Alina went to Kala Patthar, they had a couple hours of clear skies in the morning such that they were able to see Everest! What a better way to end the trip for them. On my side, the last couple days went very smoothly and I was ecstatic with all the work that we had accomplished. 16 days of hard work paid off and I am anxiously waiting for us to return and collect all the remaining data next year!

Acknowledgements

A special thanks to the NSF-CNH program for funding this research. Also a big thanks to my colleagues Daene McKinney, Alton Byers, Elizabeth Byers, Milan Shrestha, Greta Wells, Jonathan Burton, and Alina Karki among the countless others who were with Alton and Milan’s groups. Lastly, this work would not be possible without the tremendous effort and support provided by Himalayan Research Expedition and our team of guides, porters, and cooks.

For more details on the trip, see: http://davidrounce.weebly.com/imja-lake-live-2016

Edited by Sophie Berger

From Hot to Cold – Volcanology Meets the Cryosphere

From Hot to Cold – Volcanology Meets the Cryosphere

Hello again, I’m Kathi Unglert, and you’re about to read my third and final post as a student reporter at EGU 2016. Today I am writing about my experience in the cryosphere sessions from my volcanology perspective.


In preparation for the conference I kept thinking about what sort of research I would see in the cryosphere sessions. I had never really attended any specific conferences or meetings on the topic, so most of what I knew was from work that friends of mine do, which is mainly ice stream modelling. I am wondering whether similar tools (for example, analytical or numerical methods) can be used to model ice streams and lava flows?

 

A Tale of Ice and Fire

Thinking about the differences between ice streams/glaciers and lava, another potential overlap between cryospheric sciences and volcanology jumps out; In places like Iceland, volcanoes sometimes sit underneath large ice sheets. Similarly, tall volcanoes – particularly those in high mountain ranges – are often covered in snow and have small glaciers in their craters or on their summits. It is important to understand the interactions between the warm volcano, the hot lava, and the cold ice. For example, to forecast catastrophic floods that often occur when a subglacial volcanic eruption melts parts of the overlying ice and snow (so-called “jökulhlaups”). There is even a commission on “glaciovolcanism”, and it turns out that astrogeologists are quite interested in the topic to learn more about potential volcano-ice interactions on Mars. I had no idea how interdisciplinary this field of research was. It would definitely be useful for volcanologists to poke their heads into cryosphere meetings once in a while, and vice versa. Throw a little bit of planetary science in the mix, and you have a textbook example of interdisciplinary research!

Lava meets snow: Lava flowing into a canyon at the snow covered Eyjafjallajökull during an eruption in 2010 - one of the many examples where volcanology and cryospheric sciences meet. Photo credit: Martin Hensch (Imaggeo)

Lava meets snow: Lava flowing into a canyon at the snow covered Eyjafjallajökull during an eruption in 2010 – one of the many examples where volcanology and cryospheric sciences meet. Photo credit: Martin Hensch (Imaggeo)

The methods that we use in the different fields can also be quite similar: Resistivity measurements can be used to determine the extent of permafrost in the subsurface in Artic regions, but also to detect high temperature bodies beneath volcanic edifices that may be storing magma. I also saw a PICO presentation at the conference last week that uses cosmic rays to image the bed of a glacier in the Swiss Alps, a technique that volcanologists have tested to detect magma reservoirs and conduits on volcanoes!

In terms of the bigger picture, volcanological and cryospheric research overlap a lot in climatology. Erupting volcanoes emit gases and increase aerosols in the atmosphere, which can affect the climate locally, regionally, or even globally. The traces of such volcanic eruptions can sometimes be found in ice cores, where volcanic ash gets trapped and preserved for centuries or more. For a long time, it has been known that at least one big volcanic eruption in the 6th century – the traces of which have been found in ice cores – caused strong changes in climate for a few years, and some studies suggest that these effects may have contributed to political and societal instability in the Maya civilization in Central America at the same time. There was even a press conference about it at the EGU 2016 meeting. Other questions that we could ask might be “Does wide spread glaciation change the frequency or nature of volcanic eruptions?”, “How do volcanic eruptions affect the climate and ice stream or glacier dynamics?”, or “What can we learn about glacier dynamics by analyzing the locations of volcanic deposits in ice?”

So you know how they say “go big or go home”? Let’s put our minds together and get interdisciplinary! At the very least it’s going to be fun to think in slightly different terms for a while, and who knows where it may lead!

 

The EGU Student Reporter Experience

All in all, it’s been really great taking part in the Student Reporter Programme, and peeking into a totally different field. Seeing overlap between the different disciplines was a good experience, and one that was made possible by being a student reporter. Sometimes we get so stuck in our individual little niche that there is no room for anything else, despite the fact that other disciplines might have come across the same problems, struggled with the same methods, and maybe found a solution. I was lucky that the session schedule worked out ok – most days when things were a bit slow volcanology-wise I was able to go a cryosphere session. However, that way it was a very busy week, there was rarely ever any downtime, or time away from the conference. During the few quiet moments I spent time in the press office, doing some background research for my posts, editing work from the other reporters, or going to a press conference. I have to say, the press office was a new, but very cool experience. There were always interesting people around, both scientists presenting their latest results and journalists trying to find a new story. I’ve been into science writing for a while, so meeting some of the people whose work I read was a really cool bonus to the whole programme! If you enjoy writing, don’t mind a faster pace, and are curious about science at EGU outside your field I would highly recommend the Student Reporter Programme. If there is no blog in your discipline (like it was the case for me) that might even be a good thing, and you’ll get to learn some new and unexpected things!

(Edited by Emma Smith and Sophie Berger)


 

profile_highres_EarthMatters_lightKathi Unglert is a PhD student in volcanology at the University of British Columbia, Vancouver. Her work looks at volcanic tremor, a special type of earthquake that tends to happen just before or during volcanic eruptions. She uses pattern recognition algorithms to compare tremor from many volcanoes to identify systematic similarities or differences. This comparison may help to determine the mechanisms causing this type earthquake, and could contribute to improved eruption forecasting. You can find her on Twitter (@volcanokathi) or read her volcano blog.

 

Careers at the European Space Agency – How and Why?

Careers at the European Space Agency – How and Why?

As the pace of modern life speeds up and job competition becomes even more fierce, it is good to have a focused plan of where you would like to be in the future. The European Space Agency (ESA) offers traineeships and research positions to young scientists on a regular basis. They may be a springboard into your chosen career path, but how do you go about bagging one of these valuable opportunities? Below, two Research Fellows with ESA share their experiences of successfully arriving at their dream jobs. First, however, you might want to consider how you get the all-necessary experience in remote sensing in the first place. Fortunately, we are about to tell you just that: Apply for the ESA summer schools and training courses! Especially if you have a keen interest in all things icy, you should check out the upcoming ESA Advanced Training on Remote Sensing of the Cryosphere! More about this at the end.


Two (and a half) ways to join the European Space Agency as an early career Polar scientist

For most of scientists setting out on a career means completing a masters, getting a PhD, finding a post-doc. The attitude is that the jigsaw will just fall into place; perusing the job advertisements and hoping that somewhere out there, there will be that perfect project which you are not only extremely interested in, but moreover for which you tick all the right skills boxes. This simple approach may perhaps come to fruition but you stand a much greater chance if you actually draw up a plan early on in your career. The roadmap to success is knowing your goals and understanding your own limits.

One scientist with a plan is Anna Hogg. During her Geography degree at the University of Edinburgh, Anna discovered satellite data for monitoring the cryosphere. She realised she not only liked the subject but was rather good at solving computational challenges. Deciding to explore the technical side of remote sensing, Anna went on to do a masters in Space Studies at the International Space University in Strasbourg, France. After an internship with the German Space Agency (DLR) she started her PhD at the University of Leeds which she combined with an ESA Young Graduate Trainee position during her first year at graduate school.

Route 1: The ESA Young Graduate Traineeship (YGT)

If you have just finished your masters degree or even are a PhD student who has the flexibility to take up a one-year research secondment (N.B. subject to your University’s rules), you can apply to join ESA’s Young Graduate Traineeship programme. Like all jobs, Young Graduate Traineeship are advertised, but they pop up regularly and are a great way to get an insight into the mechanisms of the space agency and, in Anna’s case, its Earth Observation programme.

Anna Maria Trofaier, also an alumna of the University of Edinburgh, sidestepped into her career. After completing her physics degree, she returned to her hometown of Vienna, where she first came across Arctic issues. She had always been interested in Space, and had worked with satellites at an ESA summer school – albeit for planetary science. At this stage however, having enrolled  in a masters degree programme in Environmental Technology, she discovered satellite remote sensing for environmental monitoring. She contacted the Institute of Photogrammetry and Remote Sensing of the Vienna University of Technology, asking to join and work for them on an ESA project; a step that would shape her future for good. When she returned to the UK to do her PhD in Polar Studies at the University of Cambridge she made sure to keep the links to her Viennese colleagues and the project active. Working for ESA had always been her ambition; it was the realisation that this would have to happen through the Earth Observation programme that gave her the focus to acquire the appropriate skills for a job with ESA. And sure enough, when she was called for interview with the ESA Climate Office she felt she had arrived.

I really enjoyed my time working at ESA’s Earth Observation centre, ESRIN, just outside Rome. The Young Graduate Traineeship position I applied for had a large research component so I was able to design my own science project using data from the Earth Explorer satellite missions, like CryoSat-2. This was a great opportunity as it tied in really well with the PhD position I was awarded at the University of Leeds. There has been a lot of hard work (and fun!) along the way, but I am rewarded every day by working on an incredibly interesting topic with a network of great colleagues, (Anna Hogg).

Route 2: The ESA Internal Research Fellowship

The ESA Research Fellowship is a post-doctoral research programme that enables young scientists and engineers to undertake cutting-edge research outside of a university environment. Research Fellows usually propose their research topic within the framework of the advertised position. They are independent researchers, but they also contribute to their team’s activities. This way they get a glimpse of science management within ESA.

‘It’s been a fantastic experience! I’ve been given almost free hand to shape my own research, but it’s not just been me and my computer. I’ve thoroughly enjoyed being part of a team that coordinates research projects across Europe (the Climate Office’s main brief is the ESA Climate Change Initiative programme). I was also encouraged to get involved in the recent ESA GlobPermafrost project – working with some familiar faces but this time I’m on the ESA side of the project. We’ve been joking about how the tables have turned. It’s such a great feeling when colleagues become friends,’ (Anna Maria Trofaier).

Route 2.5: The ESA Living Planet Fellowship

There is another way to do research with ESA which is as a Living Planet Fellow (LPF). LPF’s are a traditional post-doctoral research associate (PDRA) at their own institutions, with the slight difference that part of their funding will come from ESA. Like ESA internal research fellows, LPF’s also have to propose an interesting 2 year research project, ideally with a link to other ESA science programmes. Having contributed to the ESA Climate Change Initiative (CCI) programme’s Ice Sheets project during her PhD, Anna Hogg is now a LPF at the University of Leeds. Her involvement in ESA CCI boosted her possibilities and enabled her to be successful in obtaining one of the much sought after Living Planet Fellowships.

So how will these stories help you find that perfect job (with ESA)?

  1. Keep checking the job openings. Certainly, the element of luck is always present – jobs need to be advertised in order for you to apply.
  1. Meanwhile, be outgoing and pro-active. To arrive at that ideal job you need experience. Apply for an internship or volunteer to work on a project where you will gain those all-important skills and make new contacts. And don’t underestimate the importance of networking – knowing people in your field and finding at least one person you can call a mentor will give you the support you need to successfully develop your scientific skills and securing that ideal position.
  1. Never give up. There might be times when you are uncertain whether you are fit to do the job – we all experience that nagging self-doubt. Just don’t give in to it!
  1. But do be self-aware. Of course you should always aim high and present yourself in the best light, but there is no point claiming you are good at something when in fact you have only peripherally come in contact with the subject. Understanding your limits will allow you to highlight all the things you are really good at, and if you realise you are lacking the necessary experience for the job, make sure you find a way to gain some.

Figuring out what it is you want to achieve in your professional life is half the battle. Tailoring your skills to be more in line with those goals will put you in the best position once that research or work opportunity comes along.

So what are you waiting for? Just go for it, apply and get those additional skills that will put you ahead of the game!

 

ESA Advanced Training on Remote Sensing of the Cryosphere

Thanks to our fantastic teaching team made up of experts from all over the world, we have put together an exciting course program covering thematic areas such as sea-ice, mountain glaciers, ice sheets and snow; and Earth Observation techniques such as altimetry, gravimetry and interferometry. The ESA course, which is co-sponsored by the UK Space Agency (UKSA) and UK Catapult centre, will take place at the Centre for Polar Observation and Modelling (CPOM) at the University of Leeds in September 2016. It already looks set to be a really interesting week, so if you have any questions about applying for a place on the course get in touch. Both Anna’s are on the organising committee and are happy to help.

Time series of Thwaites Glacier in West Antarctica. Credit: ESA.

Time series of Thwaites Glacier in West Antarctica composed of 29 image pairs from Sentinel-1. The top image shows the surface velocity in colours, and the bottom image is the velocity along a line starting at the grounding line and going inland. Get the data here . Credit: ESA.

(Edited by Nanna Karlsson, Sophie Berger and Emma Smith)

Image of The Week – EGU General Assembly 2016

Image of The Week – EGU General Assembly 2016

The EGU General Assembly, which takes place each year in Vienna, Austria, draws to a close today.  Attended by nearly 13,650 participants from 111 countries, with around a third of those being students – a great turn-out for this vital part of the early career scientists (ECS) community!

It has been a very productive meeting for the cryosphere division with a huge number and variety of oral and post sessions covering a wide spectrum of the cryospheric sciences. This year a number of short courses were organised by your EGU Cryosphere blog team – including a meet the editor session with Frank Pattyn which is happening this afternoon, so get yourselves along to Room 2.85 at 13:30!

A cryosphere poster session at the 2016 EGU General Assembly. Photo Credit: Kai Boggild.

A cryosphere poster session at the 2016 EGU General Assembly. Photo Credit: Kai Boggild.

We have been lucky to have our very own and very talented Student Reporter Kathi Unglert reporting from the meeting this week, so look out for her reports from the meeting appearing on the blog soon. A great evening was had by all who attended the ECS cryosphere social on Wednesday night and we can’t wait until EGU 2017!

 

The art of surviving a week of conferencing

The art of surviving a week of conferencing

Hello everyone! My name is Kathi Unglert and I’m a PhD student in volcanology at the University of British Columbia in Vancouver. I will be reporting for the Cryospheric Sciences blog during the upcoming EGU General Assembly as part of the “Student Reporter Programme”. With the meeting only a few days away, I thought I’d put together a quick guide how to make the most out of a whole week of conferencing. Hopefully you’ll find it useful! So here we go:

Preparation

Usually I would tell you to start your conference preparation way before the conference. Many conferences have a short course/field trip/professional development program around the actual conference dates. These things fill up fast, so look at the program and decide what you want to do early on (and sign up!). Often these events have discounts if you sign up early, so that’s another bonus. However, given that it’s only 3 days before the meeting starts I guess we’ll skip this step. So here’s what’s next:

Decide on a theme

Conferences are really bad for people like me, who sometimes try to do everything. There are so many opportunities and interesting things going that it’s usually impossible to take advantage of everything. The first step can be to choose a few sessions and sit all the way through them, instead of picking individual talks. You avoid running around trying to find rooms at the last minute, missing half of the talk you really wanted to see because the previous one in a different room ran late, and often the talks with the least appealing titles turn out to be the best. It can also help to identify a theme for the conference. For example for this EGU General Assembly my theme will be – you guessed it – science communication! I will leave my usual field (volcanology) and try out the mostly unknown, cold waters of cryospheric sciences. I am hoping to learn lots of new concepts that may apply to my own field. I will also do my best to view everything from a reporter’s perspective and relay anything I deem cool or fun or important to you! I might try to get into a few press conferences, and go to some of the “Meet the Editor” meetings. So much to do! Of course your “theme decision” doesn’t mean that you can’t do anything outside of the theme, it just helps to focus your attention and time. Need some inspiration to decide on your theme for EGU? Why not check out this early career guide, or some of the short courses!

Do some pre-conference research

There might be a person attending the conference with exactly the kind of job you could see yourself in. Or the researcher who came up with this awesome method that you’ve been using already, but that you still have some questions about. Or your friend from your undergrad who now lives on a different continent and whom you haven’t seen in 3 years. There are lots of reasons to look at the conference program ahead of time. When you see somebody in the program that you would like to meet, get in touch with them before the conference, and maybe you can arrange a meeting over a coffee, in a specific session, or over dinner (see Have fun).

Check for volunteering options

Some conferences give students the opportunity to get involved. That could for example be a contribution to the planning of the actual meeting, or some student or social events around it, which of course works well if the meeting is happening close to where you live. Another option is to volunteer your time during the conference. At EGU, my reporter role is a voluntary gig that I was more than happy to apply for. I’ve been interested in science communication for a while, so it seemed like a great opportunity to try out what it’s like being an “actual” reporter, and write about things way outside of my field. Plus, I might meet some famous reporters and bug them with lots of questions if I can – what’s not to like? The networking aspect opens up another topic:

Bring business cards

You might think that as a student why would I need a business card? Turns out it’s maybe even more important as a student than at a later stage (despite the fact that you don’t have a business…). Networking is all about being interested in other people, them being interested in you, and most importantly to leave a lasting impression. You never know when you might meet a person again, and in what situation. That doesn’t just apply to professionals in your field who are higher up the food chain, but even more so to your fellow students. They will be your future colleagues, and relationships between colleagues – even in different disciplines – can go a long way. I’ve been to many conferences before, and never thought about the business card thing. Man, do I wish I had. How many times have you been at a conference, awkwardly scribbling down somebody’s email address on a random piece of paper, only to lose it or to be unable to read your own writing after the fact? Business cards are a simple, tidy way to keep track of all the people you meet over the course of a conference, and a great way for them to remember you, too.

Wear your name badge somewhere easily visible

When I went to my first conference as a wee Master’s student, I thought it was maybe not super fashionable how everyone runs around with a badge around their neck. Turns out it’s actually super important. You want people you meet to have a visual of your name, to help you to leave a potentially lasting impression. That applies even more when you have somewhat complicated/foreign/rare name (I can’t expect non-German speakers to automatically make the connection from the spoken “Ka-tee” to the written “Kathi”, but I also refuse to anglicize my name. The name tag does help…). Also, for the slightly not so tall ones among us, it’s good to tie a knot into the lanyard or pin your badge to the side of your scarf or the collar of your shirt. Nothing more awkward than somebody having to bent down in front of your crotch to read your name…

Follow up

That one is a simple one – when you meet somebody interesting make sure to follow up with a short email on the day, just to refresh their memory. Following up, of course, requires some time in the evening set aside for that purpose, which leads to this:

Say no

Sometimes you’ll have to say no. There are so many things going on at conferences, from project meetings through evening receptions and dinners/drinks with old and new friends. Once in a while it’s good to say no. Set aside 1-2 hours in the evening to be able to wind down, process all the awesome experiences, and follow up on anything that the day brought (see Follow up).

Say yes

 Sometimes you’ll have to say yes. There will always be surprises, opportunities you didn’t expect. Show your face at the reception you’ve been invited to, even if it’s only for an hour or so. Go to sessions that you wouldn’t usually go to because it’s completely out of your field. I went to a lunchtime presentation about Spacecraft Landing Site Identification on Mars at a conference a few years ago, and learned that they use some of the same methodology that I use, despite a complete lack of overlap of my research with theirs. How cool is that? For this EGU, I highly recommend socializing with some fellow early career cryosphere people at our “Icy Outing” (more info here)!

Last but not least, the most important thing:

Have fun!

Yes, the conference is the reason why your supervisor paid for your flight, your hotel, and your food. But that doesn’t mean that you have to exhaust yourself to the point of collapse by day 3, when the conference lasts for another 2 days. Instead, pick a morning or afternoon with somewhat less relevant sessions and explore Vienna. Go to a museum. Take in all the history. Walk in Empress Sisi’s footsteps. Or do some shopping for the upcoming summer. Sit down in one of the many amazing coffee shops and enjoy your obligatory “Wiener Melange”. Use some time to catch up with old friends at a “Heuriger” or grab some food. If you don’t know what any of these words mean, look them up right now! Another great thing to do is spending some time getting to know new people. At a conference a few years ago, I went to a tweet-up, for example. Someone had booked a table at a pub close to the convention center, and invited fellow science-y social media people to meet up, where people only knew each other from Twitter or their respective blogs.

Doing all these things is a great way to wind down a bit (see Say no), to be refreshed after a little break and to take in more science in the following sessions. Conferences are so much more fun if you put a little bit of effort into spending time away from the meeting itself! I can’t wait to learn about more exciting science, meet fascinating people, and catch up with old and new friends during EGU!­

(Modified from a post originally published on Oct 26, 2014 on http://volcano-diaries.blogspot.com)

Edited by Sophie Berger, Emma Smith and Nanna Karlsson


Kathi Unglert is a PhD student in volcanology at the University of British Columbia, Vancouver. Her work looks at volcanic tremor, a special type of earthquake that tends to happen just before or during volcanic eruptions. She uses pattern recognition algorithms to compare tremor from many volcanoes to identify systematic similarities or differences. This comparison may help to determine the mechanisms causing this type earthquake, and could contribute to improved eruption forecasting. You can find her on Twitter (@volcanokathi) or read her volcano blog.profile_highres_EarthMatters_light

What to do at EGU  — a guide for early-career scientists

What to do at EGU  — a guide for early-career scientists

Are you going to the EGU General Assembly in Vienna next week? Check out these events for early career scientists.

To remind you when and where all these nice events and activities take place, you can directly view and import them in your electronic calendar (Isn’t it wonderful?! :-))

Social event for Early Career Cryosphere Scientists!

If you cannot make it to anything else; make it to our social event, which is organised together with APECS. After the short course on Wednesday evening (see below) we will head to the Wieden Bräu for some food, drinks and networking. We will be there at approximately 20.30. You do not have to sign up in advance, but if you know that you are coming it would be very helpful if you could let us know by filling in this doodle.

Here you can even find the event on facebook.

Meeting about the Cryosphere Blog

If you like this blog, are curious about it and would like to contribute to it  — directly and/or indirectly — please come and meet us on Tuesday the 19th of April at 12.15.

Short courses

The idea behind the short courses is to give an insight into a certain area and/or the applications/uses/pitfalls in and around the topic. There are a lot of very interesting courses at this year’s meeting and below we have highlighted a few of them. Why not drop by and meet the experts who have kindly agreed to participate and share their knowledge?

Cryosphere short courses

Using Ice core chronologies: Dos and don’ts  

Assoc. Prof. Anders M. Svensson from the Centre for Ice and Climate, University of Copenhagen will tell you all you need to know about ice cores. The course is an introduction to ice core science with an emphasis on how ice cores are dated, what the main uncertainties are, and what to be aware of when comparing with other records. The course is especially of interest to researchers who do not work directly in the ice-core community, but who find themselves using ice core data for comparison with other climate data and time-series, and who would like an introduction to what ice core records can and cannot provide.
Time and date: Wednesday the 20th of April, 19:00–20:00
Place: Room 0.31

Remark: This short course takes place just before the social event and it is said that learning heaps of stuff about ice cores is the best way to start your evening 🙂

 

The Cryosphere — Publishing Your Work: Meet The Editor! [Read More]