CR
Cryospheric Sciences

Cryospheric Sciences

Image of the Week – Sea Ice Floes!

Image of the Week – Sea Ice Floes!

The polar regions are covered by a thin sheet of sea ice – frozen water that forms out of the same ocean water it floats on. Often, portrayals of Earth’s sea ice cover show it as a great, white, sheet. Looking more closely, however reveals the sea ice cover to be a varied and jumbled collection of floating pieces of ice, known as floes. The distribution and size of these floes is vitally important for understanding how the sea ice will interact with its environment in the future. [Read More]

Image of the Week – What an ice hole!

Image of the Week – What an ice hole!

Over the summer, I got excited… the Weddell Polynya was seemingly re-opening! ”The what?” asked my new colleagues. So today, after brief mentions in past posts, it is time to explain what a polynya is.


Put it simply, a polynya, from the Russian word for “ice hole”, is a hole in the sea-ice cover. That means that in the middle of winter, the sea ice locally and naturally opens and reveals the ocean.

There are two types of polynyas

  • coastal polynyas, also known as latent heat polynyas, open because strong winds push the sea ice away from the coast.
    The ocean being way warmer than the winter-polar night atmosphere, there is a strong heat loss to the atmosphere. New sea ice also forms,  rejecting brine (salt) and forming a very cold and salty surface water layer, which is so dense that it sinks to the bottom of the ocean. This type of polynya can close back when the wind stops.
  • open ocean polynyas, sometimes called sensible heat polynyas, open because the sea ice is locally melted by the ocean. In normal conditions, a cold and fresh layer of water sits above a comparatively warm and salty layer. But mixing can occur which would bring this warm water up, directly in contact with the sea ice, which then melts. Similar to the coastal one, once the polynya has open heat loss and sea ice processes form dense water that will sink. But in this case, the sinking sustains the polynya: it further destabilises the water column, so more warm water has to be mixed up, which prevents sea ice from reforming…
What a polynya looks like, from MODIS satellite: (https://modis.gsfc.nasa.gov/)

What a polynya looks like, from MODIS satellite: (https://modis.gsfc.nasa.gov/) [Credit: David Fuglestad for Wikimedia Commons]

Some polynyas worth mentioning

  • the North Water Polynya, between Greenland and Canada in Baffin Bay, is the largest in the Arctic with 85 000 km2 (Dunbar 1969) and was officially discovered as early as 1616 by William Baffin. In fact, Inuit communities have lived in its vicinity for thousands of years (e.g. Riewe 1991), since this hole in the ice is extremely rich in marine life (e.g. Stirling, 1980).
  • Hell Gate Polynya, in the Canadian archipelago which owes its name to a dramatic event…  but this is a story for later as today we would like to leave you,  reader, with a positive impression about polynyas!
  • the Weddell Polynya, in the Weddell Sea, was discovered as we started monitoring sea ice by satellites in the 1970s. It was a huge open ocean polynya, reaching 200-300 000 km2 and lasting three winters (Carsey 1980), and it is so famous because it has not re-opened since. Although this year, the signs are here… it may happen again! It is also my personal favourite because I spent my PhD studying its representation in climate models, which wrongly simulate its opening every winter, for reasons that are still not totally clear…

Polynyas are a fascinating feature of the cryosphere, not least because they occur in the middle of winter in harsh environments and cannot be instrumented easily. They are a key spot where the ocean, the ice and the atmosphere interact directly. Their opening has a large range of consequences from plankton bloom to deep water formation. And we still struggle to represent them in models, so there is lots of work to do for early career scientists!

References and further reading

  • Carsey, F. D (1980). “Microwave observation of the Weddell Polynya.” Monthly Weather Review 108.12: 2032-2044.
  • Dunbar, M (1969). “The geographical position of the North Water”. Arctic. 22: 438–441. doi:10.14430/arctic3235
  • Riewe, R (1991). “Inuit use of the sea ice.” Arctic and Alpine Research 1:3-10. doi:10.2307/1551431
  • Smith Jr, W. O., and D. Barber, eds (2007). “Polynyas: Windows to the world”. Vol. 74. Elsevier.
    Stirling, I. A. N. (1980). “The biological importance of polynyas in the Canadian Arctic.” Arctic: 303-315, http://www.jstor.org/stable/40509029

Edited by Sophie Berger and Emma Smith

Image of the Week – Goodness gracious, great balls of ice!

Image of the Week – Goodness gracious, great balls of ice!

At first glance our image of the week may look like an ordinary stoney beach…but if you look more closely you will see that this beach is not, in fact, covered in stones or pebbles but balls of ice! We have written posts about many different weird and wonderful ice formations and phenomena (e.g. hair ice or ice tsunamis) here at the EGU Cryosphere blog and here is another one to add to the list – ice balls!


During the northern hemisphere winter these naturally formed balls of ice have been found on several Arctic shores; as well as Estonia there have been reports of them in RussiaNorth America and Northern Germany. There are even photos of “ball ice” in the Great Lakes from a 1966 book of aerial photography published by the University of Michigan. However, they are still a rare occurrence, surprising and delighting onlookers when they appear.

How do they form and why are they not seen more often?

These ice balls are thought to form from ice slush, which is amalgamated by turbulent water to form rough lumpy ice masses – similar to the way you would roll a small snow ball into a much larger one to form a snow man. The ice masses are then rounded into the smooth spherical shapes you see in our image of the week by wave action rolling them around in shallow water near the shore (see video below). This is much the same way as pebbles on a beach are smoothed and rounded – it just happens a lot faster with ice balls than solid pebbles!

It seems that the right combination of wind strength, wind direction, sea temperature and coast line shape are needed to form these features and then bring them on to the shore. For all of these things to occur at the same time is rare and special!

Ice-Hot News : The “Oldest Ice” quest has begun

Ice-Hot News : The “Oldest Ice” quest has begun

This is it! The new European horizon 2020 project on Oldest Ice has been launched and the teams are already heading out to the field, but what does “Old Ice” really mean? Where can we find it and why should we even care? This is what we (Marie, Olivier and Brice) will try to explain somewhat.


Why do we care about old ice, ice cores and past climate?

Figure 1: Drilling an ice core [Credit: Brice Van Liefferinge]

Figure 1: Drilling an ice core [Credit: Brice Van Liefferinge]

Unravelling past climate and how it responded to changes in environmental conditions (e.g. radiative forcing) is crucial for our understanding of the current climate and for predicting how climate will likely change in the future.

Ice cores contain unique and quantitative information on the past climate (e.g. atmospheric gas concentration). The caveat is that at the moment, we can “only” go back up to 800,000 years at EPICA Dome C ice core (Parrenin et al, 2007).

Nonetheless, marine records tell us that during the Mid-Pleistocene there was a major climate transition (0.8-1.2 million years ago): a change in the frequency of glacial-interglacial cycles in the Northern Hemisphere. Instead of an ice age every 40,000 year, the climate changed to what is termed a “100,000 year world”. Unfortunately, the time resolution of marine records are too coarse to provide details on the mechanisms behind such climate changes. We must therefore rely on ice cores to obtain a high enough temporal resolution. Furthermore, the ice traps air bubbles and can therefore provide a record of the atmospheric composition that can be used to directly measure the paleo atmosphere through the transition.

The new European project ‘Oldest ice’ was set up for this very objective: crack the Mid-Pleistocene Transition climate. It brings together engineers, experimentalists and modellers from 14 Universities around the world.

In this post, we will focus on the first mission of the project: locating areas with million year old ice in Antarctica. The next steps will be to:

  • develop the drilling technology,

  • improve our geophysical knowledge of the identified site,

  • and finally, reach the “holy grail”: recover ice from the very base of the ice sheet with a target age of 1.5 Million years.

The whole project is anticipated to last 10 years!

The new European project ‘Oldest ice’ was set up for this very objective: crack the Mid-Pleistocene Transition climate

The first mission: “Where to find million year old ice?”

Oldest Ice (ice more than 1 mio. years old) can only be recovered in Antarctica, but where exactly? This question has to be answered in a two-step approach:

  1. On a large scale, we must first narrow down places in Antarctica where Oldest Ice might be found. To do that, we rely on models.

  2. Then, we can focus our analysis on those regions by gathering field data in the form of airborne radar surveys. Further ground-based work is currently taking place.

On a larger scale, Oldest Ice in Antarctica requires:

  1. Thick ice and cold bed. We need thick ice to reconstruct past climate variations with sufficient temporal resolution (e.g. is there enough ice to measure air bubbles or other climate markers). However, the thicker the ice, the higher the basal temperature. If the bottom of the ice is too warm, the ice at the base will start to melt, potentially destroying the Oldest Ice of the ice sheet.
    Finding a suitable drill site hence requires a good trade-off between thickness and cold-bed conditions.

  2. Slow-moving ice. This is found mainly at the centre of the ice sheet. Imagine this: if ice were to flow at as little as 1 m per year over a period of 1.5 Million years, it would have travelled 1,500 km over that time interval! However, there is a catch: slow-moving areas are also low-accumulation areas, and low accumulation means warmer ice. This is because the ice is cooled by the addition of cold snow at the surface that then gets transformed to ice and then travels downwards. Indeed, the greater the accumulation, the deeper the “cold snow” can penetrate into the ice sheet!

  3. Undisturbed ice. In order to obtain an interpretable climate record, the ice recovered from the drill needs to be stratigraphically ordered, i.e. no mixing of the ice can have occurred so that we can assume that time increases with depth when we measure ice composition down the core. Variations in the height of the bedrock can induce such ice mixing.

(more information can be found in Van Liefferinge and Pattyn (2013))

Figure 2. Potential locations of cold bed (basal temperatures 2000 m), slow motion (horizontal flow speeds <2m/yr) The colour bar represents the basal temperature. The two insets focus on Dome C and Dome F, two areas highly likely to store million year old ice. [Credit: Brice Van Lieffering, updated from Van Liefferinge, B. and Pattyn, 2013]

Figure 2. Potential locations of cold bed (basal temperatures 2000 m), slow motion (horizontal flow speeds <2m/yr) The colour bar represents the basal temperature. The two insets focus on Dome C and Dome F, two areas highly likely to store million year old ice. [Credit: Brice Van Lieffering, updated from Van Liefferinge, B. and Pattyn, 2013]

While boundary conditions such as ice thickness and accumulation rates are relatively well constrained, the major uncertainty remains in determining thermal conditions at the ice base. The thermal conditions depend on the geothermal heat flow (the flux of “energy” provided by the Earth which conducts heat into the crust) underneath the ice sheet. But to measure the geothermal heat flow, you need to reach the bed.

We need to find the ideal drilling location which would satisfy all these conditions – a bit of a “Goldilocks’ choice”: thick ice but not too much, low accumulation but not too low, low geothermal heat flow but high enough to not get folded basal ice. To do this we use several models: a simple one which calculates the minimum geothermal heat flow needed to reach the pressure melting point that we can then compare to data sets, and a more complex one resolving in three dimensions the temperature field with thermomechanical coupling (i.e. linking the ice-flow component to the heat-flow component). The combination of modelling approaches shows that the most likely oldest ice sites are situated near the ice divide areas (close to existing deep drilling sites, but in areas of smaller ice thickness) (see Figure 2).

Give it a go: Try to find million year old ice yourself using this Matlab© tool: http://homepages.ulb.ac.be/~bvlieffe/old-ice.html

The combination of modelling approaches shows that the most likely oldest ice sites are situated near the ice divide areas

On finer scales: we need deep radiostratigraphy and age modelling

Radar profiles

Figure 3. Radargram from the new OIA radar survey (Young et al., in review) with isochrones interpreted in red [Credit: Marie Cavitte]

Figure 3. Radargram from the new Oldest Ice A radar survey (Young et al., in review) with isochrones interpreted in red [Credit: Marie Cavitte]

Radargrams (see figure 3) are powerful tools to observe the internal structure of the ice: variations in density, acidity and ice fabric all can create conductivity contrasts, which result in radar visual stratigraphy. Below the firn column (the compacting snow, up to 100 m thick), most returns are related to acidity variations, corresponding to successive depositional events (i.e. snowfall). Radar stratigraphy in this case can be considered isochronal, i.e. every visible line (see figure 3) were formed at the same moment, (Siegert et al., 1999). Such radar isochrones can then be traced for kilometres throughout the ice sheet where radar data has been acquired. When radar lines intersect an ice core site, the radar stratigraphy can then be dated by matching the isochrone-depths to the ice core depths at the site and then transferring the age-depth timescale.

This allows to date entire sub-regions. However, the very bottom of the ice column is often difficult to interpret: radar isochrones cannot always be continuously followed from the ice core.

Radargrams are powerful tools to observe the internal structure of the ice

The newly acquired Oldest Ice A radar survey (Young et al., in review) over the Dome C region (see figure 2 for location) gives very rich stratigraphic information and the proximity of the EPICA Dome C ice core has allowed the dating of the isochrones. The ice sheet in this area could only be dated to ~360,000 years (Cavitte et al., 2016) and not further back in time because deeper isochrones are tricky to tie to the ice core, and other times, there is no clear signal (deep scattering ice, visible near the bedrock, at the bottom of Figure 3). As such, we need an age model to try to describe the age-depth relation below the deepest dated isochrones.

Modelling the ice

Figure 4. More precise analysis of the Dome C Oldest Ice target, with the lines representing the Oldest Ice A airborne survey collected in winter 2015/16 (Young et al., in review). The colours represent the modelled age of the ice 60 meters above the bedrock, in thousands of years. We can see that this whole region has a lot of potential for recovering million year old ice. [Credit: Olivier Passalacqua]

Figure 4. More precise analysis of the Dome C Oldest Ice target, with the lines representing the Oldest Ice A airborne survey collected in winter 2015/16 (Young et al., in review). The colours represent the modelled age of the ice 60 meters above the bedrock, in thousands of years. We can see that this whole region has a lot of potential for recovering million year old ice. [Credit: Olivier Passalacqua]

The age of the ice primarily depends on its vertical velocity, so we can use a simple 1D model to describe the motion of the ice in the vertical direction. We run the model for an ensemble of vertical velocity profiles and basal melt rates, and consider the distribution of the basal ages (i.e. model ages) given by the profiles that reproduce the observations the best (i.e. isochrones ages).

We need an age model to try to describe the age-depth relation below the deepest dated isochrones

After running the model, it appears that many areas of the Oldest Ice A survey region host very old ice (see red and yellow dots on figure 4 which represent ages > 1 million years). A high enough bottom age gradient, provided by the dated isochrones, is required to ensure sufficiently old ice as a drilling target. Following initial calculations, it will probably be a better choice to drill on the flank of the bedrock relief than on its top.

So in the end, where do we find the oldest ice?

We have to find areas which provide a good compromise between thick ice (for the a good temporal resolution in the ice core) but not too thick (to avoid basal melting). The best sites will be the ones close to the surface ridge (to ensure limited displacement of the ice), standing above the surrounding subglacial lakes, and for which a lot of undated isochrones below the last dated isochrone are visible.

To find out more about Beyond EPICA and keep track of progress visit the project  website and follow @OldestIce on twitter!

Edited by Sophie Berger


Brice Van Liefferinge is a PhD student and a teaching assistant at the Laboratoire de Glaciology, Université libre de Bruxelles, Belgium. His research focuses on the basal conditions of the Antarctic ice sheet. He tweets as @bvlieffe.

Marie Cavitte is a PhD student at the Institute for Geophysics at the University of Texas at Austin, Texas. Her research focuses on understanding radar internal stratigraphy and using it as a means to constrain the temporal stability of the East Antarctic Ice Sheet interior.

Olivier Passalacqua is a PhD student at the Laboratoire de Glaciologie et Géophysique de l’Environnement, Grenoble, France.

Members of the consortium

  • Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI, Germany), Coordination
  • Institut Polaire Français Paul Émile Victor (IPEV, France)
  • Agenzia nazionale per le nuove tecnologie, l’energia e lo sviluppo economico sostenibile (ENEA, Italy
  • Centre National de la Recherche Scientifique (CNRS, France)
  • Natural Environment Research Council – British Antarctic Survey (NERC-BAS, Great Britain)
  • Universiteit Utrecht – Institute for Marine and Atmospheric Research (UU-IMAU, Netherlands)
  • Norwegian Polar Institute (NPI, Norway)
  • Stockholms Universitet (SU, Sweden)
  • Universität Bern (UBERN, Switzerland)
  • Università di Bologna (UNIBO, Italy)
  • University of Cambridge (UCAM, Great Britain)
  • Kobenhavns Universitet (UCPH, Denmark)
  • Université Libre de Bruxelles (ULB, Belgium)
  • Lunds Universitet (ULUND, Sweden)

Non-Europan partners

  • Institute for Geophysics, University of Texas at Austin (UTIG, US)
  • Australian Antarctic Division (AAD, Australia)

Image of the Week – Climate Change and the Cryosphere

Image of the Week – Climate Change and the Cryosphere

While the first week of COP22 – the climate talks in Marrakech – is coming to an end, the recent election of Donald Trump as the next President of the United States casts doubt over the fate of the Paris Agreement and more generally the global fight against climate change.

In this new political context, we must not forget about the scientific evidence of climate change! Our figure of the week, today summarises how climate change affects the cryosphere, as exposed in the latest assessment report of the Intergovernmental Panel on Climate Change (IPCC, 2013, chapter 4)


Observed changes in the cryosphere

Glaciers (excluding Greenland and Antarctica)

  • Glaciers are the component of the cryosphere that currently contributes the most to sea-level rise.
  • Their sea-level contribution has increased since the 1960s. Glaciers around the world contributed to the sea-level rise from 0.76 mm/yr (during the 1993-2009 period) to 0.83 mm/yr (over the 2005-2009 period)

Sea Ice in the Arctic

  • sea-ice extent is declining, with a rate of 3.8% /decade (over the 1979-2012 period)
  • The extent of thick multiyear ice is shrinking faster, with a rate of 13.5%/decade (over the 1979-2012 period)
  • Sea-ice decline sea ice is stronger in summer and autumn
  • On average, sea ice thinned by 1.3 – 2.3 m between 1980 and 2008.

Ice Shelves and ice tongues

  • Ice shelves of the Antarctic Peninsula have continuously retreated and collapsed
  • Some ice tongue and ice shelves are progressively thinning in Antarctica and Greenland.

Ice Sheets

  • The Greenland and Antarctic ice sheets have lost mass and contributed to sea-level rise over the last 20 years
  • Ice loss of major outlet glaciers in Antarctica and Greenland has accelerated, since the 1990s

Permafrost/Frozen Ground

  • Since the early 1980s, permafrost has warmed by up to 2ºC and the active layer – the top layer that thaw in summer and freezes in winter – has thickened by up to 90 cm.
  • Since mid 1970s, the southern limit of permafrost (in the Northern Hemisphere) has been moving north.
  • Since 1930s, the thickness of the seasonal frozen ground has decreased by 32 cm.

Snow cover

  • Snow cover declined between 1967 and 2012 (according to satellite data)
  • Largest decreases in June (53%).

Lake and river ice

  • The freezing duration has shorten : lake and river freeze up later in autumn and ice breaks up sooner in spring
  • delays in autumn freeze-up occur more slowly than advances in spring break-up, though both phenomenons have accelerated in the Northern Hemisphere

Further reading

How much can President Trump impact climate change?

What Trump can—and can’t—do all by himself on climate | Science

US election: Climate scientists react to Donald Trump’s victory  | Carbon Brief

Which Trump will govern, the showman or the negotiator? | Climate Home

GeoPolicy: What will a Trump presidency mean for climate change? | Geolog

Previous posts about IPCC reports

Image of the Week — Ice Sheets and Sea Level Rise

Image of the Week —  Changes in Snow Cover

Image of the Week — Atmospheric CO2 from ice cores

Image of the Week — Ice Sheets in the Climate

Edited by Emma Smith

Image of the Week – Inside a Patagonian Glacier

Image of the Week – Inside a Patagonian Glacier

Chilean Patagonia hosts many of the most inhospitable glaciers on the planet – in areas of extreme rainfall and strong winds. These glaciers are also home to some of the most spectacular glacier caves on Earth, with dazzlingly blue ice and huge vertical shafts (moulins). These caves give us access to the heart of the glaciers and provide an opportunity to study the microbiology and water drainage in these areas; in particular how this is changing in relation to climate variations. Our image of this week shows the entrance to one of these caves on Grey Glacier in the Torres del Paine National Park.


“Glacier karstification”

Glaciers in Patagonia are “temperate”, which means that the ice temperature is close to the melting point. As glacial melt-water runs over the surface of this “warm” ice it can easily carve features into ice, which are similar to those formed by limestone dissolution in karstic landscapes. Hence, this phenomenon is called Glacier karstification. It is this process that forms many of the caves and sinkholes that are typically found on temperate glaciers.

From the morphological (structural) point of view, glaciers actually behave like karstic areas, which is rather interesting for a speleologist (scientific cave explorer). Besides caves and sinkholes one often finds other shapes similar to karstic landscapes. For example, small depressions on the ice surface formed by water gathering in puddles, whose appearance resembles small kartisic basins (depressions). Of all the features formed by glacier karstification glacier caves are the most important from a glaciological perspective.

Glacier caves can be divided in two main categories:

  • Contact caves – formed between the glacier and bed underneath; or at the contact between extremely cold and temperate ice by sublimation processes (Fig. 2a)
  • Englacial caves – form inside the glacier – as shown in our image of the week today. Most of these caves are formed by runoff, where water enters the glacier through a moulin (vertical shaft) and are the most interesting for exploration and research (Fig. 2b)
Figure 2: Two different types of caves explored on the Grey Glacier. A- Contact formed between the glacier bed and overlying ice [Credit: Tommaso Santagata]. B- Entrance to an englacial cave [Credit: Alessio Romeo/La Venta].

Figure 2: Two different types of caves explored on the Grey Glacier. A- Contact formed between the glacier bed and overlying ice [Credit: Tommaso Santagata]. B- Entrance to an englacial cave [Credit: Alessio Romeo/La Venta].

Exploring the moulins of a Patagonian glacier

Located in the Torres del Paine National Park area (see Fig. 3), the Grey glacier was first explored in 2004 by the association La Venta Esplorazioni Geografiche. In April of this year, a team of speleologists went back to the glacier to survey the evolution of the glacier.

Figure 3: Map of Grey Glacier with survey site of 2004 and 2016 indicated by red dot [Adapted from: Instituto Geografico Militar de Chile ]

Figure 3: Map of Grey Glacier with survey site of 2004 and 2016 indicated by red dot [Adapted from: Instituto Geografico Militar de Chile ]

Grey glacier begins in the Andes and flows down to it’s terminus in Grey Lake, where it has three “tongues” which float out into the water (Fig, 3). As with many other glaciers, Grey Glacier is retreating, though mass loss is less catastrophic than some of Patagonia’s other glaciers (such as the Upsala – which is glaciologically very similar to the Grey Glacier). Grey Glacier has retreated by about 6 km over the last 20 years and has thinned by an average of 40 m since 1970.

In 2004 research was concentrated on the tongue at the east of this Grey Glacier (Fig. 3 – red dot), which is characterised by a surface drainage network with small-size surface channels that run into wide moulin shafts, burying into the glacier. In this latest expedition, the same area was re-examined to see how it had changed in the last 12 years.

Several moulins were explored during the 2016 expedition, including a shaft of more than 90 m deep and some horizontal contact caves (Fig 2). The glacier has clearly retreated and the surface has lowered a lot from the 2004 expedition. The extent of the thinning in recent years can be easily measured on the wall of the mountains around the glacier. Interestingly the entrance to the caves which were explored in 2004 and in 2016 was in the same position as 12 years ago, although the reasons for this are not yet clear.

The entrance of two of the main moulins which were explored were also mapped in 3D using photogrammetry techniques (see video below). The 3D models produced help us to better understand the shape and size of these caves and to study their evolution by repeating this mapping in the future. For more information about the outcome of this expedition, please follow the Inside the Glaciers Blog.

 

 

Further Reading:

Books on the subject:

  • Caves of the Sky: A Journey in the Heart of Glaciers, 2004, Badino G., De Vivo A., Piccini L.
  • Encyclopaedia of Caves and Karst Science, 2004, Editor: Gunn J.

Edited by Emma Smith and Sophie Berger


tom_picTommaso Santagata is a survey technician and geology student at the University of Modena and Reggio Emilia. As speleologist and member of the Italian association La Venta Esplorazioni Geografiche, he carries out research projects on glaciers using UAV’s, terrestrial laser scanning and 3D photogrammetry techniques to study the ice caves of Patagonia, the in-cave glacier of the Cenote Abyss (Dolomiti Mountains, Italy), the moulins of Gorner Glacier (Switzerland) and other underground environments as the lava tunnels of Mount Etna. He tweets as @tommysgeo

Black Carbon: the dark side of warming in the Arctic

Black Carbon: the dark side of warming in the Arctic

When it comes to global warming, greenhouse gases – and more specifically CO2 – are the most often pointed out. Fewer people know however that tiny atmospheric particles called ‘black carbon’ also contribute to the current warming. This post presents a paper my colleague and I recently published in nature communications. Our study sheds more light into the chemical make-up of black carbon, passing through the Arctic.


Black Carbon warms the climate

 Figure 1: Global radiative forcing of CO2 (green) compared to black carbon (blue). The colored bars show the mean change in radiative forcing due to the concentration of CO2 and BC in the atmosphere. The estimated range for the expected radiative forcing is everything between the white lines, which show the 90% confidence interval. (Data according to Boucher et al. 2013 (IPCC 5th AR) and Bond et al. 2013). [Credit: Patrik Winiger]

Figure 1: Global radiative forcing of CO2 (green) compared to black carbon (blue). The colored bars show the mean change in radiative forcing due to the concentration of CO2 and BC in the atmosphere. The estimated range for the expected radiative forcing is everything between the white lines, which show the 90% confidence interval. (Data according to Boucher et al. 2013 (IPCC 5th AR) and Bond et al. 2013). [Credit: Patrik Winiger]

Black Carbon (BC) originates from incomplete combustion caused by either natural (e.g., wild fires) or human (e.g., diesel car emissions) activities. As the name suggests, BC is a dark particle which absorbs sunlight very efficiently. In scientific terms we call this a strong positive radiative forcing, which means that the presence of BC in the atmosphere is helping to heat the planet. Some estimates put its radiative forcing in second place, only after CO2 (Figure 1). The significant thing about BC is that it has a short atmospheric lifetime (days to weeks), meaning we could quickly avoid some climate warming by getting rid of its emissions. Currently global emissions are increasing year by year and on snow and ice, the dark particles have a longer lasting effect due to the freeze and thaw cycle, where BC can re-surface, before it is washed away. It is important however to note, that our main focus on emission reduction should target (fossil-fuel) CO2 emissions, because they will affect the climate long after (several centuries) they have been emitted.

Arctic amplification: strongest warming in the North Pole

The Arctic is warming faster than the rest of our planet. Back in 1896, the Swede Arrhenius, (better known for his works: in chemistry), calculated, that a change in atmospheric CO2 – which at that time was a good 100 ppm lower than today – would change the temperature at higher latitudes (towards the poles) more than at lower latitudes.

Figure 2: Observation based global surface temperature anomalies for Jan-Mar (2016) in °C with respect to a 1961-1990 base year. Credit: GISTEMP Team, 2016: GISS Surface Temperature Analysis (GISTEMP). NASA Goddard Institute for Space Studies. Dataset accessed 2016-10-15 at http://data.giss.nasa.gov/gistemp/ [Hansen et al., 2010].

Figure 2: Surface temperature anomalies (in °C) for Jan-Mar (2016) with respect to a 1961-1990 baseline. [ Credit: NASA — GISTEMP (accessed 2016-10-15) and Hansen et al., 2010].

The problem with his calculations – as accurate and impressive they might have been – was, that he ignored the earth’s geography and seemed unaware of the big heat capacity of the oceans. On the southern half of our planet there is a lot more water, which can take up more heat, as compared to the northern half with more land surface. Thus, in reality the latitudes on the southern hemisphere have not heated as much as their northern counterparts and this effect came to be known as Arctic amplification.

Dark particles on bright snow and ice

Figure 3: Welcome to the Greenland Ice Sheet everybody. Probably an extreme case of ice covered in cryoconite, captured in August 2014 [Credit: Jason Box, (LINK: http://darksnow.org/)].

Figure 3: Ice covered in cryoconite, Greenland Ice Sheet, in August 2014 [Credit: Jason Box — Dark Snow project].

Greenhouse gases and BC are not the only reasons for the increase in temperature change and earlier onset of the melting season in the Arctic. Besides BC, there are other ‘light absorbing impurities’ such as dust, microorganisms, or a mixture of all of the above, better known as cryoconite. They all absorb solar radiation and thus decrease the albedo – the amount of solar energy reflected back to space – of the underlying white surface. This starts a vicious cycle by which these impurities melt the snow or ice and eventually uncover the usually much darker surface (e.g., rock or open sea water), leading to more solar absorption and the cycle continues. The effect and composition of these impurities are currently intensively studied on the Greenland ice sheet (check out the Black and Bloom, as well as the Dark Snow projects).

 Black Carbon effect on climate is highly uncertain

One of the reasons for the high uncertainty of BC’s climate effects is the big range in effects it has (see white line on Figure 1), when it interacts with snow and ice (or clouds and the atmosphere).

Another source of uncertainty is probably the big estimated range in the global, and especially in the regional emissions of BC in the Arctic. For example, the emission inventory we work with (ECLIPSE), is based on international and national statistics that indicate how much of a certain fuel (diesel, coal, gas, wood, etc.) is used, and in which way it is used (vehicle sizes, machine type and age, operating conditions, etc.). These numbers can vary a lot. If we, for example, line up different emission inventories of man-made emissions (Figure 4), by comparing the two different fractions of BC (fossil fuels vs. biomass burning) at different latitudes, then we see that the closer we get to the North pole, the more these emission inventories disagree. And this is still ignoring atmospheric transport or emissions of natural sources, such as wildfires.

Computer models, necessary to calculate global climate change, are partly based on input from these emission inventories. Models used for the calculation of the transport of these tiny particles have vastly improved in recent years, but still struggle at accurately mimicking the seasonality or extent of the observed BC concentrations. To some extent this is also due to the range of parametrization in the model, mainly the lifetime of BC, including its removal from the atmosphere by wet scavenging (e.g., rain). So to better understand black carbon effects on climate, more model calculations are necessary, for which the emission inventory estimates need to be verified by observations.

Figure 4: Fraction biomass burning of BC (fbb) at different latitudes North, estimated by three different emission inventories. The green line shows the GAINS emission inventory, which was the precursor to the ECLIPSE inventory (Klimont et al. 2016) [Credit: Patrik Winiger]

Figure 4: Fraction biomass burning of BC (fbb) at different latitudes North, from three different emission inventories. The green line shows the GAINS emission inventory, which was the precursor to the ECLIPSE inventory (Klimont et al. 2016) [Credit: Patrik Winiger]

How do we trace the origin of black carbon?

This is where the science of my colleagues and me comes in. By looking at BC’s isotopic ratio of stable-carbon (12C/13C) and its radiocarbon (14C) content we were able to deduce information about the combustion sources (Figure 5).

Plants (trees) take up contemporary radiocarbon, naturally present in the atmosphere, by photosynthesis of atmospheric CO2. All living organisms have thus more or less the same relative amount of radiocarbon atoms, we talk of a similar isotopic fingerprint. BC from biomass (wood) burning thereby has a contemporary radiocarbon fingerprint.

When they die, organisms stop incorporating contemporary carbon and the radiocarbon atoms are left to decay. Radiocarbon atoms have a relative short (at least on geological time-scales) half-life of 5730 years, which means that fossils and consequentially BC from fossil fuels are completely depleted of radiocarbon. This is how the measured radiocarbon content of a BC sample gives us information on the relative contributions of fossil fuels vs. biomass burning.

The stable carbon isotopic ratio gives information on the type of combustion sources (liquid fossil fuels, coal, gas flaring or biomass burning). Depending on how a certain material is formed (e.g., geological formation of coal), it has a specific isotopic ratio (of 12C/13C), like a fingerprint. Sometimes isotopic fingerprints can be altered during transport (because of chemical reactions or physical processes like condensation and evaporation). However, BC particles are very resistant to reactions and change only very little. Hence, we expect to see the same fingerprints at the observation site and at the source, only that the isotopic signal at the observation site will be a mixture of different source fingerprints.

Figure 5/ Carbon isotopic signatures of different BC sources, summarized by E.N. Kirillova (2013).

Figure 5: Carbon isotopic signatures of different BC sources, summarized by E.N. Kirillova (2013). To give information about the isotopic fingerprint, the delta-notation is used (small delta for 12C/13C, and big delta for 12C/14C). The isotopic values show how much a certain sample is different, on a per mil scale, from an international agreed isotopic standard value (or ratio) for carbon isotopes. [Credit: fig 1 from  Kirillova (2013)]

Where does the black carbon in European Arctic come from?

In our study (Winiger et al, 2016), we observed the concentrations and isotopic sources of tiny particles in airborne BC for over a year, in the European Arctic (Abisko, Sweden), and eventually compared these observations to model results, using the freely available atmospheric transport model FLEXPART and emission inventories for natural and man-made BC emissions.

Seeing our results we were first of all surprised at how well the model agreed with our observations. We saw a clear seasonality of the BC concentrations, like it has been reported in the literature before, and the model was able to reproduce this. Elevated concentrations were found in the winter, which is sometimes referred to as Arctic haze. The combustion sources showed a strong seasonality as well. The radiocarbon data showed, that fossil fuel combustion dominated in the winter and (wood) biomass burning during the low BC-burden periods in the summer. With a combination of the stable isotope fingerprints and Bayesian statistics we further concluded, that the major fossil fuel emissions came from liquid fossil fuels (most likely diesel). The model predicted a vast majority of all these BC emissions to be of European origin. Hence, we concluded, that the European emissions in the model had to be well constrained and the model parametrization of BC lifetime and wet-scavenging had to be fairly accurate for the observed region and period. Our hope is now that our work will be implemented in future models of BC effects and taken into account for future BC mitigation scenarios.

Figure 6: This is an example from the model calculations, showing where the (man-made) BC came from in January 2012. Abisko's position is marked as a blue star. The darker (red) spots show sources of higher BC contribution. This winter example was among the three highest observed (in terms of BC concentration) and the sources were ~50% wood burning, ~20% liquid fossil fuels (diesel) and ~30% coal. Some of the darkest spots can clearly be attributed to European cities.

Figure 6: Example from the model calculations, showing where the (man-made) BC came from in January 2012. Abisko’s position is marked as a blue star. The darker (red) spots show sources of higher BC contribution. This winter example was among the three highest observed (in terms of BC concentration) and the sources were ~50% wood burning, ~20% liquid fossil fuels (diesel) and ~30% coal. Some of the darkest spots can clearly be attributed to European cities. [Credit: fig4b from Winiger et al (2016)]

References

  • Anderson, T. R., E. Hawkins, and P. D. Jones (2016), CO2, the greenhouse effect and global warming: from the pioneering work of Arrhenius and Callendar to today’s Earth System Models, Endeavour, in press, doi:10.1016/j.endeavour.2016.07.002.
  • Arrhenius, S. (1896), On the influence of carbonic acid in the air upon the temperature of the ground., Philos. Mag. J. Sci., 41(August), 239–276, doi:10.1080/14786449608620846.
  • Hansen, J., R. Ruedy, M. Sato, and K. Lo (2010), Global surface temperature change, Rev. Geophys., 48(4), RG4004, doi:10.1029/2010RG000345.
  • Klimont, Z., Kupiainen, K., Heyes, C., Purohit, P., Cofala, J., Rafaj, P., Borken-Kleefeld, J., and Schöpp, W.: Global anthropogenic emissions of particulate matter including black carbon, Atmos. Chem. Phys. Discuss., doi:10.5194/acp-2016-880, in review, 2016.
  • Kirillova, Elena N. “Dual isotope (13C-14C) Studies of Water-Soluble Organic Carbon (WSOC) Aerosols in South and East Asia.” (2013). ISBN 978-91-7447-696-5 pp. 1-37
  • Winiger, P., Andersson, A., Eckhardt, S., Stohl, A., & Gustafsson, Ö. (2016). The sources of atmospheric black carbon at a European gateway to the Arctic. Nature Communications, 7.

Edited by Sophie Berger, Dasaraden Mauree and  Emma Smith
This is joint post with the Atmospheric Division , given the interdisciplinarity of the topic featured.


portraitPatrik Winiger is a PhD student at the Department of Environmental Science and Analytical Chemistry and the Bolin Centre for Climate Research, at Stockholm University. His research interest focuses on impact and mitigation of Short Lived Climate Pollutants and anthropogenic CO2 emissions. Currently he investigates the sources of black carbon aerosols in the Arctic. He tweets as @PatrikWiniger

 

Image of The Week – Plumes of water melting Greenland’s tidewater glaciers

fig1figoftheweek

Figure 1: Simulation of a plume at a tidewater glacier in a general circulation model (MITgcm). Left – water temperature and right – time-averaged submarine melt rate in metres per day. Shown are face-on views of a tidewater glacier, as if you were under the water in front of the glacier, looking towards the calving front. 250 m3/s of fresh water emerges into the ocean from a channel at the bottom of the glacier, forming a plume. As the plume rises towards the fjord surface it mixes turbulently with warm ocean water, causing the plume to warm with height. Further details of this simulation can be found here: Slater et al. 2015.

Loss of ice from The Greenland Ice Sheet currently contributes approximately 1 mm/year to global sea level (Enderlin et al., 2014). The most rapidly changing and fastest flowing parts of the ice sheet are tidewater glaciers, which transport ice from the interior of the ice sheet directly into the ocean. In order to better predict how Greenland will contribute to future sea level we need to know more about what happens in these regions.


Tidewater glaciers meet the ocean at the calving front (Fig. 2), where ice undergoes melting by the ocean (“submarine melting”) and icebergs calve off into the sea. In recent decades, tidewater glaciers around Greenland have retreated (due to increased loss of ice at the calving front) and started flowing faster. This in turn causes more ice to be released into the ocean, contributing to sea level. Understanding the cause of these changes at tidewater glaciers is an ongoing topic of research.

Figure 2: Kangiata Nunata Sermia, a large tidewater glacier in south-west Greenland. The expression of a plume originating at the base of the calving front is visible on the fjord surface as turbid sediment-rich water. [Credit: Peter Nienow]

Figure 2: Kangiata Nunata Sermia, a large tidewater glacier in south-west Greenland. The expression of a plume originating at the base of the calving front is visible on the fjord surface as turbid sediment-rich water. [Credit: Peter Nienow]

One possible cause of change is an observed warming of the ocean around Greenland (Straneo and Heimbach, 2013). A warming of the ocean is likely to lead to increased submarine melt rates, which may in turn influence iceberg calving if, for example, melting results in instability of the ice at the calving front. Submarine melt rates are thought to be increased further by upwelling of warm water at the calving front (Fig. 1 and Fig. 2).

This upwelling water, called a plume, may be initiated by submarine melting of the ice, or by fresh glacial meltwater from the ice sheet surface. This fresh glacial meltwater penetrates to the base of the glacier and flows into the ocean from beneath the glacier, which may be hundreds of metres underwater. Once in the ocean, the meltwater rises buoyantly because of a density difference between the meltwater and ocean water, forming a plume. In order to better understand the effect of plumes on submarine melting, we can model plumes using a numerical model (e.g. MITgcm). Our image of the week (Fig. 1) shows such a model, which we can use to estimate submarine melt rates. In combination with simpler analytical approaches (Jenkins et al., 2011; Slater et al., 2016), we can estimate how submarine melt rates may change over time and from glacier to glacier (Carroll et al., 2016), and begin to assess the effect of submarine melting on tidewater glaciers and ultimately on future sea level rise.

Edited by Teresa Kyrke-Smith and Emma Smith


donalds_face

Donald Slater is a PhD student in the Glaciology and Cryosphere Research Group at the University of Edinburgh. His research focusses on understanding the effect of the ocean on the Greenland Ice Sheet. For more information look up his website or follow him on twitter @donald_glacier.

Image of the Week — Listening to the Snow

Image of the Week — Listening to the Snow

When working in the middle of an ice sheet, you rarely get to experience the amazing wildlife of the polar regions. So what are we doing hundreds of kilometres from the coast with an animal tracker device? We are listening to the snow of course! It is not crazy; It is what Image of the Week today is all about!


Going Wireless

E. Bagshaw testing the range of an ETracer in a 12m borehole at the bottom of a 2m deep snow pit. [Credit: N. B. Karlsson].

E. Bagshaw testing the range of an ETracer in a 12m borehole at the bottom of a 2m deep snow pit. [Credit: N. B. Karlsson].

In June 2016, Liz Bagshaw and I travelled to the EGRIP (East Greenland Ice Core Project) camp to test a handful of wireless sensors named “ETracers” in a new setting. The “wireless” part is very important, because it means that we can make measurements without having to connect our instrument to a cable, which may fail or snap. Instead, the sensors transmit all their data as radio waves. We use the same frequency that biologists use for tracking animals – although there weren’t many to see in the middle of the Greenland Ice Sheet!

The ETracer sensors were originally developed for measuring the meltwater under the ice at the margin of the Greenland ice sheet. We wanted to test if they could also tell us something about what is going on in the snow.  For example, how does the snow temperature change and how is the snow compacting in different parts of the ice sheet? These questions might seem theoretical but their answers are important when working with data from satellites, since the satellite measurements may be affected by different snow conditions.

Pink Baubles

The ETracers stacked on small magnets. This temporarily stops their bleeps [Credit: E. Bagshaw].

The ETracers stacked on small magnets. This temporarily stops their bleeps bleeps and is an efficient way of silencing them while we are listening for other ETracers [Credit: E. Bagshaw].

Armed with an antenna (see image of the week), radar receivers and what looked like small pink plastic baubles we set to work. The pink baubles are in fact the ETracers – small devices that contain temperature, pressure and conductivity sensors.  First, we used a 60m deep borehole that was drilled earlier in the season. In order to test the range of the Etracer we lowered one to the bottom of the hole. We set up the antenna and receiver at the surface, and started listening for the ETracer signal.  We were very pleased when the Etracer sensor happily chirped back informing us that it was below -30 degrees C at the bottom of the hole.

Our colleagues had also drilled several 12m boreholes for us, and we now installed ETracers at the bottom of the holes as well as on the surface. For over a month, the ETracers sent back information to our receivers on the ground about temperature, pressure and conductivity of the snow.

We are still analysing our data but the most important part of our work is done: we have shown that the ETracers can accurately measure the properties of the snow. Next year, we will return to the camp and set up more experiments. Stay tuned – or rather keep listening!

You can read more about setting up the EGRIP camp in a previous Image of the Week post “Ballooning on the Ice“.

Edited by Emma Smith and Sophie Berger

Sea Level “For Dummies”

Sea Level “For Dummies”

Looking out over the sea on a quiet day with no wind, the word “flat” would certainly pop up in your mind to describe the sea surface. However, this serene view of a flat sea surface is far from accurate at the global scale.

The apparent simplicity behind the concept of sea level hides more complex science that we hope to explain in a simple manner in today’s “For Dummies” post, which will give you the keys to understand the important aspects of past sea change, and an ability to look into and understand how sea level is a key factor in the future.

Everyone will be familiar with news stories about current sea level rise, but it can be very confusing to understand what this means in real terms; how fast it is happening and why we should care about it anyway. So to begin with, let’s have a look at what we mean by sea level?


Sea Level – It’s all about gravity!

[Read More]

Follow

Get every new post on this blog delivered to your Inbox.

Join other followers: