CR
Cryospheric Sciences

Cryospheric Sciences

Image of the Week – Summer is fieldwork season at EastGRIP!

Image of the Week – Summer is fieldwork season at EastGRIP!

As the days get very long, summer is a popular season for conducting fieldwork at high latitudes. At the North East Greenland Ice Stream (NEGIS), the East Greenland Ice-core Project (EastGRIP) is ongoing. Several scientists are busy drilling an ice core through the ice sheet to the very bottom, in continuation to previous years (see here and here). This year, amongst others, several members from the European Research Council (ERC) supported synergy project ice2ice are taking part in the work at EastGRIP. Besides sleeping in the barracks that can be seen in our Image of the Week, the scientists enjoy the international and interdisciplinary setting and, of course, the work in a deep ice core drilling camp…


Life at the EastGRIP camp

In total, 22 people live in the camp (see Fig.2): 1 field leader, 5 ice core drillers, 4 ice core loggers, 3 people working with the physical properties of the ice, 2 are doing continuous water isotope analysis, 2 surface science scientists, 2 field assistants, and 1 mechanic, 1 electrical engineer and most important an excellent cook. We cover a variety of nationalities: British, Czech, Danish, French, German, Japanese, Korean, Norwegian, Russian and more. The crew changes every four weeks and the EastGRIP project aims to get as many young scientists (Master and PhD students) into camp as possible, so that it also works as a learning environment for new generations. In total, the number of people that have and will spent time at EastGRIP this season is almost 100, making it a buzzing science hub. This environment leads to extensive science discussions over the dinner table and therefore facilitates the interdisciplinary connections so vital in ice core science.

Fig.2: The current crew at EastGRIP dressed up for the Saturday party (tie and dress obligatory!) [Credit: EastGRIP diaries].

Science at the EastGRIP camp

The main aim of the EastGRIP project is to retrieve an ice core by drilling through the North East Greenland Ice Stream (NEGIS) up to a depth of 2550 m (!). Ice streams are responsible for draining a significant fraction of the ice from the Greenland Ice Sheet (see Fig. 3). We hope to gain new and fundamental information on ice stream dynamics from the project, thereby improving the understanding of how ice streams will contribute to future sea-level change. The EastGRIP project has many international partners and is managed by the Centre for Ice and Climate, Denmark with air support carried out by US ski-equipped Hercules aircraft managed through the US Office of Polar Programs, National Science Foundation.

Fig. 3: Ice velocities from RADARSAT synthetic aperture radar data are shown in color and illustrate the wedge of fast-flowing ice that begins right at the central ice divide and cuts through the ice sheet to feed into the ocean through three large ice streams (Nioghalvfjerds isstrømmen, Zachariae isbræ, and Storstrømmen). [Credit: EastGRIP, data from Joughin et al., 2010]

Currently, four Norwegian and Danish scientists from the ice2ice project have joined the EastGRIP project to conduct field work at the ice core drilling site. The ice2ice project focuses on how land ice and sea ice influence each other in past, present, and future. Thus, being at the EastGRIP site is a great opport

unity for us in ice2ice to learn more about how the fast-flowing ice stream in North East Greenland may influence the stability of the Greenland ice cap and to enjoy the collaborative spirit at an ice core drilling site.

 

This year’s fieldwork at EastGRIP started in May and will continue until August. We aim to make it through the brittle zone of the ice. This is a zone where the gas bubbles get enclosed in the ice crystals and thus the ice is, as the name indicates, more brittle than at other depths. Unfortunately for us, the brittle zone makes it very hard to retrieve the ice in a great quality. This is because of the pressure difference between the original depth of the ice and the surface, that causes the ice to fracture when it arrives at the surface. We are doing our very best to stabilize the core and several optimizations in terms of both drilling and processing of the ice core are being applied.

Fig. 4: Cross-section view of an ice core [Credit: Helle Astrid Kjær].

Still, a large part of the core can already be investigated (see Fig. 4) for water isotopes to get information about past climate. Also, ice crystals directions are being investigated through thin slices of the ice core to help better understanding the flow of the NEGIS. On top of the deep ice core, which is to be drilled to bedrock over the coming years, we are doing an extensive surface program to look at accumulation changes.

In the large white plains…

Despite all the fun science and people, when you are at EastGRIP for more than 4 weeks, you have a very similar landscape everyday and can miss seeing something else than just the great white. About a week ago, a falcon came by to remind us of the rest of the world (see Fig. 5). It flew off after a couple of days. We will follow its path to the greener parts of Greenland when we will soon fly down to Kangerlussuaq. Someone else will then take over our job at EastGRIP and enjoy the wonders of white…

Fig.5: Visit of a falcon [Credit: Helle Astrid Kjær].

Further reading

Edited by Clara Burgard


Helle Astrid Kjær is a postdoc at the Centre for Ice and Climate at the Niels Bohr Institute at University of Copenhagen. When she is not busy in the field drilling and logging ice cores, she spends most of her time in the lab retrieving the climate signal from ice cores. These include volcanic events, sea salts, dust with more by means of Continuous Flow Analaysis (CFA). Further she is hired to manage the ice2ice project.

Image of the Week — High altitudes slow down Antarctica’s warming

Elevations in Antarctica. The average altitude is about 2,500m. [Credit: subset of Fig 5 from Helm et al (2014)]

When it comes to climate change, the Arctic and the Antarctic are poles apart. At the north of the planet, temperatures are increasing twice as fast as in the rest of the globe, while warming in Antarctica has been milder. A recent study published in Earth System Dynamics shows that the high elevation of Antarctica might help explain why the two poles are warming at different speeds.


The Arctic vs the Antarctic

At and around the North Pole, in the Arctic, the ice is mostly frozen ocean water, also known as sea ice, which is only a few meters thick. In the Antarctic, however, the situation is very different: the ice forms not just over sea, but over a continental land mass with rugged terrain and high mountains. The average height in Antarctica is about 2,500 metres, with some mountains rising as high as 4,900 metres.

A flat Antarctica would warm faster

Mount Jackson in the Antarctic Peninsula reaches an altitude of 3,184 m  [Credit: euphro via Flickr]

Marc Salzmann, a scientist working at the University of Leipzig in Germany, decided to use a computer model to find out what would happen if the elevation in Antarctica was more like in the Arctic. He discovered that, if Antarctica were flat, there would be more warm air flowing from the equator to the poles, which would make the Antarctic warm faster.

As Antarctica warms and ice melts, it is actually getting flatter as time goes by, even if very slowly. As such, over the next few centuries or thousands of years, we could expect warming in the region to speed up.

Reference/further reading

planet_pressThis is modified version of a “planet press” article written by Bárbara Ferreira and originally published on 18 May 2017 on the EGU website
(a Serbian version is also available, why not considering adding a new language to the list? 🙂 )

Image of the Week – The birth of a sea-ice dragon!

Image of the Week – The birth of a sea-ice dragon!

Dragon-skin ice may sound like the name of an episode of the Game of Thrones fantasy franchise. However, this fantasy name hides a rare and bizarre type of ice formation that you can see in our Image of the Week. It has been recently observed by the “Polynyas, ice production and seasonal evolution in the Ross Sea” (PIPERS) research team in Antarctica. This bizarre phenomenon caused by strong wind conditions has not been observed in Antarctica since 2007.


PIPERS expedition observed dragon-skin ice

In early April, the Nathan B Palmer icebreaker (see Fig. 2) began its 65-day voyage to Antarctica to study sea ice in the Ross Sea during the autumn period. This expedition, named PIPERS, was carried out by a team of 26 scientists from 9 countries. Its goal was to investigate polynyas, ice production, and seasonal evolution with a particular focus on the Terra Nova Bay and Ross Sea Polynyas (see Fig. 3).

Fig.2 : The Nathan B Palmer icebreaker caught in sea ice [Credit: IMAS ].

A polynya is an area of open water or thin sea ice surrounded by thicker sea ice and is generally located in coastal areas [Stringer and Groves, 1991]. Ice formation in polynyas is strongly influenced by wind conditions whose action can lead to astonishing spatial patterns in sea ice appearance. Special wind conditions probably also lead to what the members of the PIPERS expedition had the opportunity to observe: ice patterns that resemble dragon scales, therefore called dragon-skin ice. Such a sighting is quite remarkable as the last one dates back from a decade. However, the sparsity of observations of dragon-skin ice phenomena is probably a consequence of the relatively small number of expeditions in Antarctica during the autumn and winter seasons…

Fig. 3: The Terra Nova Bay Polynya and Ross Sea Polynya explored by the PIPERS expedition. [Credit: PIPERS ].

Chaotic ice formation caused by strong winds

Dragon-skin ice is a chaotic result of the complex interplay between the ocean and the atmosphere. Coastal polynyas in Antarctica are kept open by the action of strong and cold offshore winds (see Fig. 4) known as katabatic winds, which blow downwards as fast as 100 km/h for several hours [McKnight and Hess, 2000]. Sea ice forming at the cold sea surface gets blown away by these strong winds, preventing a closed sea-ice cover in this area. As the ice is blown away, an area of open water gets in direct contact with the atmosphere, leading to strong cooling and new formation of ice, that gets blown away again, and so on… Therefore, in general, sea ice in polynyas consists of thin pancake ice (see Fig. 5) i.e. round pieces of ice from 0.3 to 3 meters in diameter, which results from the aggregation of ice crystals caused by the wave action. Due to the wind action, the pieces of ice are pushed out by the wind action to the edges of the polynya.  As these pieces push strongly against each other, dragon-like scales appear on sea ice giving birth to the so-called dragon-skin ice.

Fig.4: Formation of coastal polynyas due to the action of katabatic winds [Credit: Wikimedia Commons ].

Figure 5: Sea ice in polynyas takes the form of pancake ice due to the action of water waves [Credit: PIPERS ].

The importance of polynyas for ocean-atmosphere interactions

Besides providing us with dazzling pictures of the cryosphere, investigating sea-ice production and evolution in polynyas is essential to better understand the complex interactions between the ocean and the atmosphere.
As sea water freezes into sea ice, salt is expelled into the ocean, raising its local salinity. The incessant production of sea ice in polynyas leads to water masses with very high salinity inside the polynyas. As sea water cools down, it releases energy in the atmosphere, leading to a warming of the atmosphere in polar regions. Moreover, due to their high density, these masses of cold and salty water sink and mix with lower ocean layers.
First results from the PIPERS mission show that when sea ice is forming, polynyas release greenhouse gases to atmosphere, instead of capturing it, as it was previously assumed! But fully understanding what’s happening there will necessitate more time and analyses….

Further reading

 

Edited by Scott Watson and Clara Burgard
Modified by Sophie Berger on 3 July 2017 to account for remarks of Célia Sapart (Member of the PIPER expedition)


Kevin Bulthuis is a F.R.S.-FNRS Research Fellow at the Université de Liège and the Université Libre de Bruxelles. He investigates the influence of uncertainties and instabilities in ice-sheet models as a limitation for accurate predictions of future sea-level rise. Contact Email:kevin.bulthuis@ulg.ac.be.

Image of the Week – Heat waves during Polar Night!

Fig. 1: (Left) Evolution of 2-m air temperatures from a reanalysis over December 2016. (Right) Time series of temperature at the location of the black cross (Svalbard). Also shown is the 1979-2000 average and one standard deviation (blue). [Credit: François Massonnet ; Data : ERA-Interim]

The winter 2016-2017 has been one of the hottest on record in the Arctic. In our Image of the Week, you can see that air temperatures were positive in the middle of the winter! Let’s talk about the reasons and implications of this warm Arctic winter. But first, let’s take a tour in Svalbard, the gateway to the Arctic…

A breach in the one of the world’s largest seed vaults

The Global Seed Vault on Svalbard (located at the black cross in our Image of the Week) is one of the world’s largest seed banks. Should mankind face a cataclysm, 800,000 copies of about 4,000 species of crops can safely be recovered from the vault. Buried under 120 m of sandstone, located 130 m above sea level, and embedded inside a thick layer of permafrost, the vault can withstand virtually all types of catastrophe – natural or man-made. This means, for example, that it is high enough to stay above sea level in case of a large sea-level rise, or that it is far enough from regions that might be affected by nuclear warfare. But is it really that safe? Last winter, vault managers reported water flooding at the entrance of the cave, after an unexpected event of permafrost melt in the middle of polar night. Not enough to put the seeds at risk (they are safely guarded in individual chambers deeper in the mountainside), but worrying enough to raise concern about how, and why such an event happened…

Fig. 2: Entrance of the Svalbard Global Seed Vault. [Credit: Dag Terje Filip Endresen, Wikimedia Commons ].

Soaring temperatures in the Arctic

The Arctic region is often dubbed the “canary in the coal mine” for climate change: near-surface temperatures there have risen at twice the pace of the world’s average, mainly due to the process of “Arctic Amplification whereby positive feedbacks enhance greatly an initial temperature perturbation. Increases in lower-troposphere Arctic air temperatures have occurred in conjunction with a dramatic retreat and thinning of the sea-ice cover in all seasons, a decrease of continental spring snow cover extent, and significant mass loss from glaciers and ice sheets (IPCC, 2013)

Winter temperatures above freezing point

The last two winters (2015-2016 and 2016-2017) have been particularly exceptional. As displayed in our Image of the Week for winter 2016-2017 and here for 2015-2016 (see also two news articles here and here for an accessible description of the event), temporary intrusions of relatively warm air pushed air temperatures above freezing point in several parts of the Arctic, even causing sea ice to “pause” its expansion at a period of the year where it usually grows at its fastest rate (see Fig. 3).

Fig.3 : Mean Arctic sea ice extent for 1981 to 2010 (grey), and the annual cycles of 1990 (blue), and 2016-2017 (red and cyan, respectively). [Credit: National Snow and Ice Data Center. Interactive plotting is available here ]

Cullather et al. (2016) and Overland and Wang (2016) conducted a retrospective analysis of the 2015-2016 extreme winter and underlined that the mid-latitude atmospheric circulation played a significant role in shaping the observed temperature anomaly for that winter (see also this previous post). Scientists are still working to analyse the most recent winter temperature anomaly (2016 – 2017).

Unusual?

How unusual are such high temperatures in the middle of the boreal winter? It is important to keep in mind that the type of event featured in our Image of the Week results from the superposition of weather and climate variability at various time scales, which must be properly distinguished. At the synoptic scale (i.e., that of weather systems, several days), the event is not exceptional. For example, a similar event was already reported back in 1975! It is not surprising to see low-pressure systems penetrate high up to the Arctic.

At longer time scales (several months), the observed temperature anomaly in the recent two winters is more puzzling. The winter 2015-2016 configuration appears to be connected with changes in the large-scale atmospheric circulation (Overland and Wang, 2016). To understand the large-scale atmospheric circulation, scientists like to map the so-called “geopotential heightfield for a given isobar, that is, the height above sea level of all points with a given atmospheric pressure. The geopotential height is a handy diagnostic because, in a first approximation, it is in close relationship with the wind: the higher the gradient in geopotential height between two regions, the higher the wind speed at the front between these two regions. The map of geopotential height anomalies (i.e., deviations from the mean) for the 700 hPa level in December (Fig. 4) is suggestive of the important role played by the large-scale atmospheric circulation on local conditions. The link between recent Arctic warming and mid-latitude atmospheric circulation changes is a topic of intense research.

Fig.4: Anomaly in 700 hPa geopotential height, December 2016 (with regard to the reference period 1979-2000) [Credit: François Massonnet; Data: ERA-Interim]

Finally, at climate time scales (several years to several decades), this event is not so surprising: the Arctic environment has changed dramatically in the last few decades, in great part due to anthropogenic greenhouse gas emissions. With a warmer background state, there is higher probability of winter air temperatures surpassing 0°C if synoptic and large-scale variability positively interact with each other, as seems to have been the case during the last two winters.

What does this mean for future winters?

The rapid transformation of the Arctic is already having profound implications on ecosystems (Descamps et al., 2016) and indigenous populations (e.g., SWIPA report). To a larger extent, it can potentially affect our own weather: we polar scientists like to say that “what happens in the Arctic, does not stay in the Arctic”. The unusual summers and winters that large parts of Europe, the U.S. and Asia have experienced in recent years might be related to the rapid Arctic changes, according to several scientists – but there is no consensus yet on that matter. One thing is known for sure: the last two winters have been the warmest on record, but this might just be the beginning of a long chain of more extreme events…

Further reading

Edited by Scott Watson and Clara Burgard


François Massonnet is a F.R.S.-FNRS Post-Doctoral Researcher at the Université catholique de Louvain and affiliated at the Barcelona Supercomputing Center (Spain). He is assessing climate models as tools to understand (retrospectively and prospectively) polar climate variability and beyond. He tweets as @FMassonnet. Contact Email: francois.massonnet@uclouvain.be

Image of the Week – When the dirty cryosphere destabilizes!

Image of the Week – When the dirty cryosphere destabilizes!

Ice is usually something you see covering large ocean areas, mountain tops and passes or as huge sheets in polar regions. This type of ice is clearly visible from space or with the naked eye. There is, however, a large volume of ice that is less visible. This ice is distributed over the polar and high alpine permafrost regions; and is the ice hidden below ground. It might be hidden, but that doesn’t mean we should ignore it. If this below-ground ice melts, the ground might collapse!


On solid ground?

To change the surface of a landscape usually requires wind or water, which actively erodes the material around it. In permafrost areas, however, different mechanisms are at work. In these areas, the ground or parts of the ground, are frozen all year round and the formation and melting of below-ground ice changes the landscape in a complicated way. Below-ground ice can have many shapes and sizes depending on moisture availability, sediment type and thermal regime (French, 2007). Because a gram of ice has 9 % higher volume than a gram of water, simply freezing, thawing and re-freezing soil water can make the surface “wobbly” and irregular. Since ice doesn’t drain from a saturated soil, as water does, a permanently frozen soil can also contain moisture in excess of the absorption capacity of the soil – excess ice. This means that ice might take up the majority of the ground volume in ice-rich areas.

Our Image of the Week (Fig. 1) was taken in NE Greenland. The phenomenon shown is a result of ground, which has been frozen for many years, being destabilized. In this photo, the below-ground ice has begun to melt, and the decrease in ice volume has caused the ground to collapse, forming what is known as a thermokarst development (Fig. 1). This is just one type of feature that can be caused by below-ground ice mass loss. Kokelj and Jorgenson (2013) give a nice overview of recognized thermokarst features including: retrogressive thaw slumps, thermokarst lakes and active layer detachment slides. Ice melt might also simply be expressed as a lowering of the land surface (thermal subsidence), as observed in peat (Dyke and Slaten, 2010) and in areas with ice wedge polygons (Jorgenson et al., 2006), or in upraised plateaus (Chasmer et al., 2016).

the decrease in ice volume has caused the ground to collapse

The spatial scales of these types of collapse features span from depressions of 10 cm depth to areas of several square kilometers, with thermokarst features many meters deep. The rates of surface change also vary from sudden detachment and slide of the unfrozen upper active layer on slope, to features developed over centuries and even millennia (e.g. Morgenstern et al., 2013).

The most dramatic surface changes often happen where ground ice content is high, such as in the coastal lowland tundras of Siberia (e.g. Morgenstern et al., 2013) or coastal northern Canada (Fortier, et L., 2007). However, thermokarst development is found also in coastal Greenland (Fig. 1) and even the McMurdo Dry Valleys of Antarctica (Levy et al., 2013).

Why does the ground ice melt?

Many factors can lead to the destabilization of below-ground ice bodies. Notable ones are:

  • Erosion of the surface allows for atmospheric energy to penetrate deeper into the ground.
  • Thermal contraction or other types of cracks might create an easy access to deeper layers for water and energy.
  • Persistent running water might erode physically as well as transfer fresh energy into the system.

Fig. 2 shows a recently opened crack in the ground, close to the karst formation shown in Fig.1. The crack reveals a large body of massive (pure ice) below-ground ice. The opening of the crack, however, also creates a highway for heat energy into the now unstable ice body, which will start degrading.

Figure 2: Looking into a recently opened crack revealing a large ice body just below the summer thaw layer, NE Greenland [Credit: Laura Helene Rasmussen]

“And so what?”

The surface changes somewhat. No big deal. Why investigate where and how and how much and how fast?

For people living in permafrost areas thermal subsidence might happen below the foundation of their house or destabilize the one road leading to their local airport (Fortier, et al., 2011).

Figure 3: Taking a closer (!) look at below-ground ice, NE Greenland [Credit: Line Vinther Nielsen].

Thermal subsidence might also change the hydrology of the area, causing surface water to find new routes (Fortier, et al., 2007) or pool in new places. When water pools in the depressions above frozen ground, the exchange of energy between the atmosphere and the permafrost is altered.

There is increased heat transport downward into the ground in summer (Boike et al., 2015), which can then lead to more melting. Similarly, thermokarst development itself exposes more frozen ground to above-zero temperatures, leading to further thawing (Chasmer et al., 2016)

and crucially mobilising otherwise dormant carbon stored in the permafrost (Tarnocai, et al., 2009).

Reports of an increase in rates of thaw have been linked to recent climatic warming (Kokelj and Jorgenson, 2013), and changes in precipitation patterns (e.g. Kokelj et al., 2015). So expect to see this “dirty“ cryospheric component receiving more attention, and don’t be surprised if you see an increasing number of strange scientists figuratively or literally (!) sticking their heads into cracks in the ground…

Edited by Emma Smith and Clara Burgard


Laura Helene Rasmussen is a Danish permafrost scientist working at the Center for Permafrost, University of Copenhagen. She has spent many seasons in Greenland, working with the Greenland Ecosystem Monitoring Programme and is interested in Arctic soils as an ecosystem component, their climate sensitivity, functioning and simply understanding what goes on below.

Image of the Week – Far-reaching implications of Everest’s thinning glaciers

Fig. 1: Surface lowering on the debris-covered Khumbu Glacier, Nepal derived from differencing two digital elevation models. (a) The debris-covered surface looking down-glacier. (b-d) Surface elevation change 1984−2015. [Credit: Scott Watson and Owen King]

From 1984 to 2015, approximately 71,000 Olympic size swimming pools worth of water were released from the melting Khumbu Glacier in Nepal, which is home to Everest Basecamp. Find out how Himalayan glaciers are changing and the implications for downstream communities in this Image of the Week.


Himalayan glaciers supply freshwater

Himalayan glaciers supply meltwater for ~800 million people, including for agricultural, domestic, and hydropower use (Pritchard, 2017). They also alleviate seasonal variations in water supply by providing meltwater during the dry season. This freshwater resource is rapidly depleting as glaciers thin and glacial lakes begin to form (Bolch et al., 2008; Watson et al., 2016; King et al., 2017). Additionally, outburst floods from these lakes (see those previous posts on the topic) threaten downstream impacts for communities and infrastructure (Rounce et al., 2016).

Debris-covered glaciers thin, rather than retreat

Erosion in the rugged mountain topography leads to high quantities of rocky debris accumulating on the glacier surface, which changes the glacial response to climatic warming. The debris-layer (which can be several metres thick at the lower terminus) insulates the ice beneath, leading to highest melt rates up-glacier of the terminus. Therefore these debris-covered glacier thin, rather than retreat up-valley.

This thinning is actually a complex process of sub-debris melt, and mass loss associated with supraglacial ponds and ice cliffs, which form pits on the glacier surface and are ‘hot-spots’ of mass loss. Since the highest rates of surface lowering are up-glacier from the terminus, the surface slope of the glacier reduces and meltwater increasingly ponds on the surface, which can ultimately form a large glacial lake.

Khumbu Glacier

Fig 2 : Khumbu Icefall viewed from Kala Patthar. [Credit: Scott Watson]

The image of this week (Fig 1) shows surface elevation change on Khumbu Glacier, which flows down from Everest and is home to Everest Base Camp in Nepal. Parts of the glacier surface have thinned by up to 80 m 1984−2015 and over 197,600,000 m³ of ice melted over study period, which is approximately 71,000 Olympic size swimming pools worth of water! The thinning is clearly visible in the vertical offset between the contemporary glacier surface and the Little Ice Age moraines (a) and is highest in the mid-section of the glacier (b).

Mountaineers ascending Mount Everest climb the Khumbu icefall (Fig 2) and camp on the glacier surface. Additionally, popular trekking routes also run alongside and across the glacier, which are used by thousands of tourists every year. The accessibility of both these mountaineering and trekking routes is changing in response to glacier mass loss.

Stagnating glaciers are unhealthy glaciers

Accumulation of snowfall in the highest reaches of the glacier would typically compress to form new ice and replenish mass loss on the lower glacier as the glacier flows downstream. However, trends of reduced precipitation (Salerno et al., 2015) and decreasing glacier surface slopes promote a reduction in glacier velocity. Figure 3 shows glaciers stagnating in their lower reaches, where water is also visibly ponding on the glacier surface. For Khumbu and Ngozumpa glaciers, this contributes to the development of large glacial lakes. If these lakes continue to grow, once fully established they can rapidly increase glacier mass loss as a calving front develops (e.g. at Imja Lake).

Fig. 3: Surface velocity of glaciers in the Everest region derived from feature tracking on ASTER satellite imagery. [Credit: Scott Watson]

Edited by Sophie Berger

References/further reading

  • Bolch, T Buchroithner, MF Peters, J Baessler, M and Bajracharya, S. 2008. Identification of glacier motion and potentially dangerous glacial lakes in the Mt. Everest region/Nepal using spaceborne imagery. Nat. Hazards Earth Syst. Sci. 8: 1329-1340. 10.5194/nhess-8-1329-2008
  • King, O Quincey, DJ Carrivick, JL and Rowan, AV. 2017. Spatial variability in mass loss of glaciers in the Everest region, central Himalayas, between 2000 and 2015. The Cryosphere 11: 407-426. 10.5194/tc-11-407-2017
  • Pritchard, HD. 2017. Asia’s glaciers are a regionally important buffer against drought. Nature 545: 169-174. 10.1038/nature22062
  • Rounce, DR McKinney, DC Lala, JM Byers, AC and Watson, CS. 2016. A new remote hazard and risk assessment framework for glacial lakes in the Nepal Himalaya. Hydrol. Earth Syst. Sci. 20: 3455-3475. 10.5194/hess-20-3455-2016
  • Salerno, F Guyennon, N Thakuri, S Viviano, G Romano, E Vuillermoz, E Cristofanelli, P Stocchi, P Agrillo, G Ma, Y and Tartari, G. 2015. Weak precipitation, warm winters and springs impact glaciers of south slopes of Mt. Everest (central Himalaya) in the last 2 decades (1994–2013). The Cryosphere 9: 1229-1247. 10.5194/tc-9-1229-2015
  • Watson, CS Quincey, DJ Carrivick, JL and Smith, MW. 2016. The dynamics of supraglacial ponds in the Everest region, central Himalaya. Global and Planetary Change 142: 14-27. http://dx.doi.org/10.1016/j.gloplacha.2016.04.008

Scott Watson is a PhD student at the University of Leeds, UK. He studies glaciers in the Everest region and specifically the surface interactions of supraglacial ponds and ice cliffs, which act as positive feedback mechanisms to increase glacier mass loss. He also investigates glacial lake hazards and the implications of glacial lake outburst floods.

Tweets @CScottWatson. Outreach: www.rockyglaciers.co.uk

Image of the Week – Ice lollies falling from the sky

Lolly in the sky. [Credit: Darwin Bell via flickr]

You have more than probably eaten many lollipops as a kid (and you might still enjoy them). The good thing is that you do not necessarily need to go to the candy shop to get them but you can simply wait for them to fall from the sky and eat them for free. Disclaimer: this kind of lollies might be slightly different from what you expect…


Are lollies really falling from the sky?

Eight years ago (in January 2009), a low-pressure weather system coming from the North Atlantic Ocean reached the UK and brought several rain events to the country. Nothing is really special about this phenomenon in Western Europe in the winter. However, a research flight started sampling the clouds in the warm front (transition zone where warm air replaces cold air) ahead of the low-pressure system and discovered hydrometeors (precipitation products, such as rain and snow) of an unusual kind. Researchers named them ‘ice lollies’ due to their characteristic shape and maybe due to their gluttony. The microphysical probes onboard the aircraft, combined with a radar system located in Southern England, allowed them to measure a wide range of hydrometeors, including these ice lollies that were observed for the first time with such concentration levels.

How do ice lollies form?

A recent study (Keppas et al, 2017) explains that ice lollies form when water droplets (size of 0.1 to 0.7 mm) collide with ice crystals with the form of a column (size of 0.25 to 1.4 mm) and freeze on top of them (see Fig. 2).

Fig 2: Formation of an ice lolly: water droplet (the circle) collides with an ice crystal (the column) [Credit: Fig. 1a from Keppas et al., (2017)].

Such ice lollies form in ‘mixed-phase clouds’, i.e. clouds made of water droplets and ice crystals and whose temperature is below the freezing point (0°C). At these temperatures, water droplets can be supercooled, meaning that they stay liquid below the freezing point.

Figure 3 below shows the processes and particles involved in the formation of ice lollies. Ice lollies are mainly found at temperatures between 0 and -6°C, in the vicinity of the warm conveyor belt, which represents the main source of warm moist air that feeds the low-pressure system. This warm conveyor belt brings water vapour that participates in the formation and growth of supercooled water droplets. Ice crystals formed near the cloud tops fall through the warm conveyor belt and collide with the water droplets to form ice lollies.

Fig 3: Processes involved with the formation of ice lollies, which mainly form under the warm conveyor belt [Credit: Fig 4 from Keppas et al., (2017)].

Are these ice lollies important?

Ice lollies were observed more recently (September 2016) during another aircraft mission over the northeast Atlantic Ocean but no radar coverage supported the observations. At the moment of writing this article, the lack of observations prevent us from determining the importance of these ice lollies in the climate system. However, future missions would provide more insight. In the meantime, we suggest you to enjoy a lollipop such as the one shown in the image of this week 🙂

This is a joint post, published together with the atmospheric division blog, given the interdisciplinarity of the topic.

Edited by Sophie Berger and Dasaraden Mauree

Reference/Further reading

Keppas, S. Ch., J. Crosier, T. W. Choularton, and K. N. Bower (2017), Ice lollies: An ice particle generated in supercooled conveyor belts, Geophys. Res. Lett., 44, doi:10.1002/2017GL073441

 


DavidDavid Docquier is a post-doctoral researcher at the Earth and Life Institute of Université catholique de Louvain (UCL) in Belgium. He works on the development of processed-based sea-ice metrics in order to improve the evaluation of global climate models (GCMs). His study is embedded within the EU Horizon 2020 PRIMAVERA project, which aims at developing a new generation of high-resolution GCMs to better represent the climate.

Image of the Week – How geometry limits thinning in the interior of the Greenland Ice Sheet

Image of the Week –  How geometry limits thinning in the interior of the Greenland Ice Sheet

The Greenland ice sheet flows from the interior out to the margins, forming fast flowing, channelized rivers of ice that end in fjords along the coast. Glaciologists call these “outlet glaciers” and a large portion of the mass loss from the Greenland ice sheet is occurring because of changes to these glaciers. The end of the glacier that sits in the fjord is exposed to warm ocean water that can melt away at its face (a.k.a. its “terminus”) and force the glacier to retreat. As the glaciers retreat, they thin and this thinning can spread into the interior of the ice sheet along the glacier’s flow, causing glaciers to lose ice mass to the ocean as is shown in our Image of the Week. But how far inland can this thinning go?

Not all glaciers behave alike

NASA’s GRACE mission measures mass changes of the Earth and has been used to measure ice mass loss from the Greenland ice sheet (see Fig. 1a). The GRACE mission has been extremely valuable in showing us where the largest changes are occurring: around the edge of the ice sheet. To get a closer look, my colleagues and I use a technique called photogrammetry.

Using high-resolution satellite photos, we created digital elevation models of the present-day outlet glacier surfaces. The imagery was collected by the WorldView satellites and has a resolution of 50 cm per pixel! When we compared our present-day glacier surfaces with surfaces from 1985, with the help of an aerial photo survey of the ice sheet margin (Korsgaard et al., 2016), we found that glacier thinning was not very uniform in the West Greenland region (see our Image of the Week, Fig. 1b). Some glaciers thinned by over 150 meters at their termini but others remained stable and may have even thickened slightly! Another observation is that, of the glaciers that have thinned, some have thinned only 10 kilometers into the interior while others have thinned hundreds of kilometers inland (Felikson et al., 2017).

But atmospheric and ocean temperatures are changing on much larger scales – they can’t be the cause of these huge differences in thinning that we observe between glaciers. So what could be the cause of the differences in glacier behaviour? My colleagues and I used kinematic wave theory to help explain how each glacier’s unique shape (thickness and steepness) can control how far inland thinning can spread…

A kinematic wave of thinning

As a glacier’s terminus retreats, it thins and this thinning can spread upglacier, into the interior of the ice sheet, along the glacier’s flow. This spreading of thinning can be modeled as a diffusive kinematic wave (Nye, 1960). This means that the wave of thinning will diffuse in the upglacier direction while the flow of ice advects the thinning in the downglacier direction. An analogy for this process is the spreading of dye in a flowing stream. The dye will spread away from the source (diffusion) and it will also be transported downstream (advection) with the flow of water.

The relative rates of diffusion and advection are given by a non-dimensional value called the Peclet number. For glacier flow, the Peclet number is a function of the thickness of the ice and the surface slope of the ice. Where the ice is thick and flat, the Peclet number is low, and thinning will diffuse upglacier faster than it advects downglacier. Where the ice is thin and steep, the Peclet number is high, and thinning will advect downglacier faster than in diffuses upglacier.

Let’s take a look at an example, the Kangilerngata Sermia in West Greenland

Figure 2: Thinning along the centreline of Kangilerngata Sermia in West Greenland. (a) Glacier surface profile in 1985 (blue), present-day (red), and bed (black). (b) Dynamic thinning from 1985 to present along the profile with percent unit volume loss along this profile shown as colored line. (c) Peclet number along this profile calculated from the geometry in 1985 with Peclet number running maxima highlighted (red). [Credit: Denis Felikson]

There, dynamic thinning has spread from the terminus along the lowest 33 kilometers (see Fig. 2). At that location, the glacier flows over a bump in the bed, causing the ice to be thin and steep. The Peclet number is “high” in this location, meaning that any thinning here will advect downglacier faster than it can spread upglacier. Two important values are needed to further understand the relationship between volume loss and Peclet number. On the one hand, we compute the “percent unit volume loss”, which is the cumulative thinning from the terminus to each location normalized by the total cumulative thinning, to identify where most of the volume loss is taking place. On the other hand, we identify the “Peclet number running maxima” at the locations where the Peclet number is larger than all downglacier values. These locations are critical because if thinning has spread upglacier beyond a local maximum in the Peclet number, and accessed lower Peclet values, then thinning will continue to spread until it reaches a Peclet number that is “large enough” to prevent further spreading. But just how large does the Peclet number need to be to prevent thinning from spreading further upglacier?

Figure 3: (a) Percent unit volume loss against Peclet number running maximum for 12 thinning glaciers in West Greenland. (b) Distances from the termini along glacier flow where the Peclet number first crosses 3. Abbreviations represent glacier names [Credit: Denis Felikson]

If we now look at the percent unit volume loss versus Peclet number running maxima for not only one but twelve thinning glaciers in the region, we see a clear pattern: as the Peclet number increases, more of the volume loss is occurring downglacier (see Fig. 3). By calculating the medians of the glacier values, we find that 94% of unit volume loss has occurred downglacier of where the Peclet number first crosses three. All glaciers follow this pattern but, because of differences in glacier geometry, this threshold may be crossed very close to the glacier terminus or very far inland. This helps explaining the differences in glacier thinning that we’ve observed along the coast of West Greenland. Also, it shows that the Peclet number can be a useful tool in predicting changes for glaciers that have not yet retreated and thinned.

Further reading

Image of the Week – Ice Ice Bergy

Image of the Week – Ice Ice Bergy

They come in all shapes, sizes and textures. They can be white, deep blue or brownish. Sometimes they even have penguins on them. It is time to (briefly) introduce this element of the cryosphere that has not been given much attention in this blog yet: icebergs!


What is an iceberg?

Let’s start with the basics. An iceberg, which literally translates as “ice mountain”, is a bit of fresh ice that broke off a glacier, an ice shelf, or a larger iceberg, and that is now freely drifting in the ocean. As an approximation, you can consider that since an iceberg is already in the water (about 90% under water even), its melting does not contribute to sea-level rise. However, if you remember our Sea Level “For Dummies” post, you know that the melting of fresh ice reduces the ocean’s density and makes it expand. Icebergs are found at both poles, although they tend to be larger in the Southern Ocean. The largest iceberg ever spotted there was 335 by 97 km, which represents an area larger than Belgium !

Modelled trajectories of icebergs around Antarctica. The different colours represent different size classes, ranging from 0-1 km² (class 1) to 100-1000 km² (class 5). [Credit: subset of Fig 2 from Rackow et al (2017)]

Icebergs can drift over thousands of kilometres (Rackow et al., 2017), during several years. A more thorough account of the life of an iceberg will be given in a future post, but be aware that among other things, as it drifts:

  • The iceberg is eroded by the waves and melted by the relatively warm ocean;
  • It can split in several pieces because of this melting and mechanical stress;
  • Sea ice can freeze around it, trapping it in the pack ice.

This means that the iceberg changes shape a lot, and can be tricky to monitor (Mazur et al, 2017).

Why do we want to monitor icebergs?

You may have heard of the Titanic, and hence are aware that icebergs pose a risk for navigation not only in the polar regions but even in the North Atlantic. Icebergs also are large reservoirs of freshwater, and depending on how and where they melt, this inflow of melted freshwater can really affect the ocean; it even dominates the freshwater budget in some Greenland fjords (Enderlin et al., 2016).

Icebergs have traditionally been rather understudied, so we are only now discovering how important they are and how they interact with the rest of the climate system: increasing sea ice production (A. Mazur, PhD thesis, 2017), biological activity (Vernet et al., 2012), and even carbon storage (Smith et al., 2011). And sometimes, they have penguins on them!

All eyes in the CryoTeam are now turned to the Antarctic Peninsula, where a giant iceberg may detach from the Larsen C ice shelf soon. To learn how we know that, check this video made by ESA. And of course, continue reading us – we’ll be reporting about the birth of this monster berg!

An iceberg by Antarctica [Credit: C. Heuzé]

Edited by Sophie Berger

Further reading

  • Enderlin et al. (2012), Iceberg meltwater fluxes dominate the freshwater budget in Greenland’s iceberg-congested glacial fjords, Geophysical Research Letters, doi:10.1002/2016GL070718

  • Mazur et al. (2017), An object-based SAR image iceberg detection algorithm applied to the Amundsen Sea, Remote Sensing of Environment, doi:10.1016/j.rse.2016.11.013

  • Rackow et al. (2017), A simulation of small to giant Antarctic iceberg evolution: Differential impact on climatology estimates, Journal of Geophysical Research: Oceans, doi: 10.1002/2016JC012513
  • Smith et al. (2011), Carbon export associated with free-drifting icebergs in the Southern Ocean, Deep Sea Research, doi: 10.1016/j.dsr2.2010.11.027
  • Vernet et al. (2012), Islands of Ice: Influence of Free-Drifting Antarctic Icebergs on Pelagic Marine Ecosystems, Oceanography, doi:10.5670/oceanog.2012.72

Image of the Week – Antarctica’s Flowing Ice, Year by Year

Fig 1: Map series of annual ice sheet speed from Mouginot et al. (2017). Speeds range from 0 (purple) to 1000+ (dark brown) m/yr. [Credit: George Roth]

Today’s Image of the Week shows annual ice flow velocity mosaics at 1km resolution from 2005 to 2016 for the Antarctic ice sheet. These mosaics, along with similar data for Greenland (see Fig.2), were published by Mouginot et al, (2017) last month as part of NASA’s MEaSUREs (Making Earth System Data Records for Use in Research Environments) program.


How were these images constructed?

The mosaics shown today (Fig 1 and 2) were built by combining optical imagery from the Landsat-8 satellite with radar (SAR) data from the Sentinel-1a/b, RADARSAT-2, ALOS PALSAR, ENVISAT ASAR, RADARSAT-1, TerraSAR-X, and TanDEM-X sensors.

Although the authors used the well-known techniques of feature and speckle tracking to produce their velocities from optical and radar images, respectively, the major novelty of their study lies in the automation and integration of the different datasets.

Fig.2: Mosaics of yearly velocity maps of the Greenland and Antarctic ice sheet for the period 2015-2016.Composite of satellite-derived yearly ice sheet speeds from 2005-2016 for both Greenland and Antarctica. [Credit: cover figure from Mouginot et al. (2017)]

How is this new dataset useful?

Previously, ice sheet modellers have used mosaics composed of satellite data from multiple years to cover the entire ice sheet. However, this new dataset is one of the first to provide an ice-sheet-wide geographic scale, a yearly temporal resolution, and a moderately high spatial resolution (1km). This means that modellers can now better examine how large parts of the Greenland and Antarctic ice sheets evolve over time. By linking the evolution of the ice sheets to the changes in weather and climate over those ice sheets during specific years, modellers can calibrate the response of those ice sheets’ outlet glaciers to different climate conditions. The changes in the speeds of these outlet glaciers have important consequences for the amount of sea level rise expected for a given amount of warming.

How can I start using this data?

The yearly MEaSUREs data is hosted at the NSIDC in NetCDF format. The maps shown in the animated image were made using Quantarctica/QGIS (for more information on Quantarctica, check out our previous post E). QGIS natively supports NetCDF files like these mosaics with no additional import steps. Users can quickly calculate new grids showing speed, changes in velocities between years, and more by using the QGIS Raster Calculator or gdal_calc.

References/ Further Reading

Mouginot, J., Rignot, E., Scheuchl, B., & Millan, R. (2017). Comprehensive Annual Ice Sheet Velocity Mapping Using Landsat-8, Sentinel-1, and RADARSAT-2 Data. Remote Sensing, 9(4), 364. http://dx.doi.org/10.3390/rs9040364

Image of the Week – Quantarctica: Mapping Antarctica has never been so easy!

Image of the Week – A high-resolution picture of Greenland’s surface mass balance

Written with help from Jelte van Oostsveen
Edited by Clara Burgard and Sophie Berger


George Roth is the Quantarctica Project Coordinator in the Glaciology group (@NPIglaciology) at the Norwegian Polar Institute. He has spent the last several years helping researchers with GIS, cartography, and remote sensing in both the Arctic and Antarctic.

Follow

Get every new post on this blog delivered to your Inbox.

Join other followers: